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Abstract. Anonymous secret sharing schemes allow a secret to be re-
covered from shares regardless of the identity of shareholders. Besides
being interesting in its own right, this property is especially appealing
to guarantee the anonymity of participants when secret sharing is used
as a building block of more general distributed protocols (e.g. to anony-
mously share the secret key corresponding to a public key). However,
current constructions of anonymous secret sharing schemes are not very
efficient (because of the number of shares that every participant must
hold) and existing bounds do not leave much room for optimism. In
this paper we propose to weaken the anonymity condition to partial
anonymity, where by partial anonymity we mean that the identity of the
participant is not made public, but he is known to belong to some sub-
set. That is, the search for a participant narrows down to one in a set of
possible candidates. Furthermore, we propose a general construction of
partial anonymous secret sharing schemes.
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1 Introduction

Anonymous secret sharing schemes allow a secret to be recovered from a set
of shares without knowledge of which participants hold which shares. That is,
in such schemes the computation of the secret can be carried out regardless the
identities of shareholders. Beyond its intrinsic interest, anonymous secret sharing
is particularly attractive to guarantee the anonymity of participants in more
general distributed protocols. A typical application is anonymous sharing of the
secret key corresponding to a certain public key. Unfortunately, the constructions
of anonymous secret sharing schemes in the literature are not very efficient (in
terms of the number of shares that every participant must hold) and existing
bounds [4,16] do not leave much hope for forthcoming efficient constructions.

Anonymous secret sharing schemes were introduced in 1988 by Stinson and
Vanstone [22]. Phillips and Phillips [17] proved that only some specific access
structures can yield anonymous secret sharing schemes where the size of the
shares given to each participant is equal to the size of the secret (smallest possi-
ble size). Later on, Blundo and Stinson [4] gave general constructions of anony-
mous secret sharing schemes. They also gave lower bounds on the size of the set
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of shares (as a function of the size of the secret) both for threshold and non-
threshold access structures. However, their constructions are not very efficient
and their lower bounds preclude substantially improved forthcoming construc-
tions. Since then, some authors have proposed constructions of anonymous secret
sharing schemes, but either they are quite inefficient or they are restricted to
the particular (2, n) threshold case.

1.1 Contribution and Plan of This Paper

The lack of efficient constructions for anonymous secret sharing motivates us
to weaken the anonymity condition in quest of efficiency, measured in terms of
the number of shares that must be held by any participant. In that sense, we
introduce the notion of partial anonymity with the aim of providing a tradeoff
between the level of anonymity achieved by a scheme and its efficiency. Roughly
speaking, in partial anonymous secret sharing the identity of the participant is
not made public, but he is known to belong to some subset. In other words,
the search for a participant narrows down to one in a set of possible candidates.
This principle bears some vague resemblance to k-anonymity [18] used for privacy
in databases and k-anonymity to preserve privacy in communication protocols
[23,24]. On the practical side, we propose an efficient construction of a scheme
fulfilling the partial anonymity property.

The rest of the paper is organized as follows. We introduce some basic con-
cepts on secret sharing schemes in Section 2. In Section 3 we review the notion
of anonymous secret sharing schemes and we introduce the notion of partially
anonymous secret sharing schemes. In Section 4 we provide some constructions
of partially anonymous secret sharing schemes. Finally, we conclude in Section 5.

2 Secret Sharing

Secret sharing schemes were independently introduced by Shamir [19] and Blak-
ley [2] in 1979. A secret sharing scheme is a method whereby a special entity D,
usually called dealer, distributes a secret s among a set P = {P1, . . . , Pn} of n
players. The dealer secretly sends to every player Pi his share si of the secret
s in such a way that only authorized subsets can recover the secret whereas
non-authorized subsets obtain no information on the secret s.

A basic principle when designing secret sharing schemes is to minimize the
amount of secret material. Therefore, the length of the shares should be as small
as possible. In a secret sharing scheme the length of any share of a participant
is greater than or equal to the length of the secret. When they are equal, the
scheme is called ideal.

The family Γ of the subsets of shares authorized to recover the secret is called
access structure. Any access structure is assumed to be monotone, that is, any
superset of an authorized subset is also an authorized subset. A particular case is
an access structure formed by those sets of players with at least t players, that is,

Γ = {A ⊂ P | | A |≥ t}
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Parameter t is usually called threshold and the corresponding access structure is
a (t, n) threshold access structure (or t-out-of-n threshold access structure).

Shamir’s secret sharing scheme [19] realizes an ideal (t, n) threshold access
structure by means of Lagrange polynomial interpolation. Indeed, let Zq be a
finite field with q > n and s ∈ Zq the secret to be shared. The dealer picks
a polynomial p(x) of degree at most t − 1, with free term the secret s, that is
p(0) = s. The polynomial p(x) can be written as p(x) = s +

∑t−1
j=1 ajx

j , where
aj ∈ Zq has been randomly chosen.

Every player Pi is univocally assigned a value αi ∈ Zq. Then, D privately
sends to player Pi his share si = p(αi), for i = 1, . . . , n.

In this way, a set A ⊂ P of at least t players can recover the secret s = p(0)
by interpolating the set of shares they hold:

p(0) =
∑

Pi∈A

siλ
A
i =

∑

Pi∈A

si

⎛

⎝
∏

Pj∈(A\Pi)

−αj

αi − αj

⎞

⎠ ,

where λA
i are the Lagrange coefficients.

On the other hand, it is not difficult to prove that less than t players do not
have any option better than random guessing to find out the secret.

For the particular case of (n, n)-threshold access structures (Γ = P), that
is, where all participants must jointly co-operate to recover the secret, more
efficient constructions exist. They are not only ideal, but the dealer’s compu-
tations are simpler. In [15], Karnin, Greene and Hellman proposed the follow-
ing (n, n)-threshold secret sharing scheme. To share a secret s among a set
P = {P1, . . . , Pn} of n players, the dealer selects at random si ∈ Zq, for any
player Pi, for i = 1, . . . , n − 1 and secretly sends si to participants Pi as his
secret share. Then, D computes the share of the participant Pn as follows:
sn = s −

∑n−1
i=1 si ∈ Zq and sends sn to Pn. Note that when all participants

join their shares, they recover the secret s by simply adding their shares in Zq.
Although threshold access structures have been extensively studied and used

in the literature not only for secret sharing schemes (see, for example, [3,6])
but also for more general protocols (see, for example, [8,20,7]), they correspond
to quite peculiar situations where all players play exactly the same role. On
the contrary, what usually happens in real situations is that different players
play different roles. For example, some players can have some restrictions and
other some special privileges, or players can be divided into different categories
depending on some properties. This leads to access structures more general than
thresholds. Ito, Saito and Nishizeki [14] proved that for any monotone access
structure there always exists a secret sharing scheme realizing it. The main
drawback of their construction is that the size of shares is exponential in the
number of parties in the access structure.

We describe next a general family of access structures that will be used in
our proposal. It is the compartmented access structure, introduced by Simmons
in [21]. There is a set of different compartments C1, . . . , Cm in such a way
that every participant is placed in a compartment, for some i = 1, . . . , m. We
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define ψ : {1, . . . , n} → {1, . . . , m} as the function assigning to each player Pi

a compartment, denoted by Cψ(i). Then, given positive integers t1, . . . , tm and
t ≥

∑m
i=1 ti, the access structure consists of all subsets with at least ti partici-

pants in Ci and a total of at least t participants. That is,

Γ = {A ⊂ P | | A ∩ Ci |≥ ti, ∀i = 1, . . . , m , | A |≥ t}.

Brickell [5] proved that there exist ideal secret sharing schemes realizing com-
partmented access structures. We review next the construction by [11], restricted
to the particular case when t =

∑m
i=1 ti. For the case t >

∑m
i=1 ti, we refer the

reader to [11,5].
The solution is based in Shamir’s secret sharing schemes. The main idea is

that the dealer shares a secret s by using an (m − 1)-degree polynomial. Each
compartment is related to a share of s. Then, to compute their share, at least ti
players in compartment Ci must join their shares. During the set-up phase, the
dealer distributes the share of each compartment Ci among the players in the
compartment by using a (ti, |Ci|)-secret sharing scheme. Specifically D randomly
selects an (m − 1)−degree polynomial P (x) ∈ Zq[x], such that P (0) = s. Let
si = P (αi), for i = 1, . . . , m, where αi is a public value associated with Ci.
Then he distributes si among the players in compartment Ci using independent
Shamir schemes. That is, he randomly selects a polynomial Fi(x) ∈ Zq[x] of
degree ti − 1, for all i = 1, . . . , m. Then, D secretly sends to every player Pi his
share Fψ(i)(βi), where βi is the public value in Zq associated to participant Pi.

Compartmented access structures are actually a special case of the more gen-
eral multipartite access structure [13,9].

3 Anonymity and Partial Anonymity in Secret Sharing

Two kinds of anonymity in secret sharing are described in the literature. On
the one hand, those schemes where shareholder identification is not required
to successfully recover the secret, but the identity of the shareholder can be
derived from the share. On the other hand, those schemes with the additional
feature that players cannot be identified even when they show their shares. In
other words, nobody can figure out the identity of a participant from the share he
holds. The former category of schemes is usually called anonymous secret sharing
(sometimes this anonymity is also referred to as submission anonymity). The
latter category is usually called cryptographic anonymous secret sharing schemes
[10,12]. The cryptographic notion of anonymity for secret sharing schemes is
stronger than the submission notion. Some of the schemes satisfying submission
anonymity do not offer cryptographic anonymity. This is because each share
directly identifies the owner. In spite of this fact, submission anonymity in secret
sharing remains especially interesting for example as a building block of some
other distributed cryptographic protocols (e.g. distributed signature schemes).
Then, when a participant publishes his partial information nobody is able to
identify him because he does not directly publish his share but some information
derived from it.
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Several constructions have been published, both for submission anonymity
[4,16,22] and for cryptographic anonymity [12]. However they are not very ef-
ficient and the most efficient ones have a small threshold (t = 2). Motivated
by this fact, we introduce the concept of partial anonymity for secret sharing
schemes. The main idea is to trade off anonymity and efficiency, by relaxing the
anonymity condition to obtain more efficient schemes. This idea applies to both
kinds of anonymity (submission and cryptographic) described before.

In order to define partial anonymity, we will lean on the definition of (t, n)
anonymous threshold secret sharing in [1]. Let Σ be a (t, n) threshold secret
sharing scheme on the set of participants P = {P1, . . . , Pn}. For every secret s
we note the set of shares as the vector (s1, . . . , sn), where si is the share (not
necessarily a single value in Zq) held by player Pi.

Definition 1. [Beimel-Franklin] A secret sharing scheme Σ realizing a (t, n)
threshold access structure is said to be anonymous if, for every secret s, every
vector of shares (s1, . . . , sn) and every permutation π : {1, . . . , n} → {1, . . . , n},
the vector (s1, . . . , sn) is a vector of shares for the secret s if and only if the
vector (sπ(1), . . . , sπ(n)) is a vector of shares for s.

The above definition captures the idea that the reconstruction of the secret
can be performed from the shares without knowing the identities of the parties
holding those shares. That is, if a vector of shares is possible given a secret s,
then every possible permutation in the order of the coordinates in this vector is
possible given the secret s.

Note that this situation does not happen in Shamir’s (t, n) threshold secret
sharing scheme described in Section 2 whenever 1 < t < n. Indeed, the La-
grange coefficients λA

i of a participant Pi depend on the set A to reconstruct
the secret. However, when t = n, Shamir’s scheme fulfills Definition 1 (and also
Karnin, Greene and Hellman’s scheme, see Section 2), although the identity of
the participants arises implicitly from the access structure (as it is known that
all participants take part in the protocol).

In Definition 1, a permutation is applied to the whole set of shares to guarantee
anonymity of the shareholders. We do not propose to apply a permutation to the
whole set of shares, but to divide the set of participants into different groups and
to fulfill Definition 1 within each group to guarantee anonymity of a participant
inside its group.

More specifically, let G1, . . . , Gm ⊂ P be subsets of participants in such a
way that every participant Pi is placed in one and only one subset G1, . . . , Gm.
Let ψ : {1, . . . , n} → {1, . . . , m} be the mapping that assigns each participant
to a group, so that participant Pi will be placed in group Gψ(i). Let ni be the
cardinality of each set Gi and let ti be a threshold assigned to set Gi, for all
i = 1, . . . , m. Then, we require that Definition 1 be satisfied for each of the sets
Gi to guarantee that, locally, the participant is anonymous within his group and,
globally, the only partial information that is obtained is that the participant is
a member of a specific group.

Let Σi be a (ti, ni) secret sharing scheme for the set of participants in Gi. For
every secret s we note the set of shares in Σi as the vector (si

j1 , . . . , s
i
jni

), where si
j
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is the share (not necessarily a single value in Zq) held by player Pj and we assume
that the set of players in Gi is Pj1 , . . . , Pjni

, where {j1, . . . , jni} ∈ {1, . . . , n}
for every j. Then, if at least ti participants in Gi pool their shares, they can
directly recover the secret s and the only information that is leaked is that they
are participants in the set Gi.

However, it may be the case that the secret is not recoverable by players in
each set Gi or maybe it is not desirable that members of a unique set can recover
the secret. For example, in the former situation, to satisfy the secrecy condition,
each threshold ti must be at least t (a general threshold set related to the overall
number of participants n) but the cardinality ni of Gi may be smaller than t.
A way to circumvent this problem of small sets is to require a threshold ti for
each set Gi in such a way that the sum of all the thresholds is at least t. In
this way, the threshold ti can be adapted to the size of Gi. Then, the resulting
access structure is a (G1, . . . , Gm) compartmented access structure (see Section 2
above).

Let Σ be a secret sharing scheme realizing a (G1, . . . , Gm) compartmented
access structure on the set of participants P with thresholds t1, . . . , tm, t =

∑m
i=1.

For every secret s we note the set of shares as the vector (s1, . . . , sn), where si

is the share (not necessarily a single value in Zq) held by player Pi. Then a
(t1, . . . , tm)-partially anonymous secret sharing scheme realizing a (G1, . . . , Gm)
compartmented access structure can be defined as follows:

Definition 2. [Partial anonymous secret sharing] A secret sharing scheme Σ is
said to be (t1, . . . , tm)-partially anonymous if, for every secret s, every vector of
shares (s1, . . . , sn) and every permutation π : {1, . . . , n} → {1, . . . , n} such that
π(Gi) = Gi (e.g. for every Pj ∈ Gi, Pπ(j) ∈ Gi) for all i = 1, . . . , m, the vector
(s1, . . . , sn) is a vector or shares for the secret s if and only if (sπ(1), . . . , sπ(n))
is a vector of shares for s.

Note that for m = 1, the new Definition 2 is equivalent to Definition 1 by [1].

4 Some Constructions

In this section we provide a general construction of (t1, . . . , tm)-partially anony-
mous secret sharing scheme from different anonymous secret sharing schemes.
The key point is that anonymous secret sharing schemes used as a building block
have smaller thresholds, so the share length of the (t1, . . . , tm)-partially anony-
mous secret sharing scheme is considerably smaller that the one in a (t, n) anony-
mous secret sharing scheme (remember that t =

∑m
i=1 ti and n =

∑m
i=1 ni).

To begin with, let us describe the very particular case t1 = . . . = tm = 1.
That is, we assume the secret is recovered if at least one participant in each of
the compartments Gi pool their shares. Note that in this case we are considering
m = t. Similar reasonings apply if the threshold considered is less than m (at
least t < m participants from t different compartments are required to recover
the secret).
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Example 1. Let P = {P1, . . . , Pn} be the set of players and let G1, . . . , Gm be
compartments such that any set in P is placed exactly in one compartment, in
such a way that no compartment remains empty. Let us construct a (1, . . . , 1)-
partially anonymous secret sharing scheme as follows. The dealer picks at random
a polynomial p(x) of degree at most m − 1, whose free term is the secret s he
wants to share. Let p(x) be p(x) = s +

∑m−1
j=1 ajx

j , where aj ∈ Zq has been
randomly chosen, for j = 1, . . . , m − 1.

Every compartment Gi is univocally associated a value αi ∈ Zq. Then, D
privately sends to each player in Gi his share si = p(αi), for i = 1, . . . , m.

Therefore, a set A ⊂ P with at least one player from every compartment can
recover the secret s = p(0) by interpolating the set of shares they hold. The main
difference with Lagrange interpolation in the usual Shamir scheme is that now
the participants do not have to publish their value αi but only the compartment
Gi they belong to. So, the only information that an outsider can derive is that
the participant belongs to Gi.

It is easy to check that such a secret sharing scheme fulfills Definition 2 because
the shares of all players in Gi are the same, for any i = 1, . . . , m.

This construction can also use Karnin, Greene and Hellman’s scheme instead
of Shamir’s scheme. �	

The above construction can be generalized to obtain a (t1, . . . , tm)-partially anony-
mous secret sharing schemeusing as building blocks both (ti, ni)-anonymous secret
sharing schemes and compartment secret sharing constructions.We detail this idea
below.

Theorem 1. Let G1, . . . , Gm be disjoint compartmented subsets of players such
that G1∪· · ·∪Gm = P. Let Σi be a (ti, ni) anonymous secret sharing schemes on
the set of players Gi, for i = 1, . . . , m. Then, there exists a (t1, . . . , tm)-partially
anonymous secret sharing scheme Σ realizing a (G1, . . . , Gm) compartmented
access structure. Furthermore, the share length of scheme Σ is lower-bounded by
the maximum of the share lengths of schemes Σi.

Proof. In order to prove the theorem, we will explicitly construct the scheme Σ
from Σ1, . . . , Σm. Without loss of generality, we can assume that

G1 = {P1, . . . , Pn1}

G2 = {Pn1+1, Pn1+2, . . . , Pn1+n2}

. . .

Gi = {Pn1+...+ni−1+1, Pn1+...+ni−1+2, . . . , Pn1+...+ni−1+ni}

. . .

Gm = {Pn1+...+nm−1+1, Pn1+...+nm−1+2, . . . , Pn}

Then, to share a secret s, the dealer chooses at random a polynomial P (x) of
degree m − 1. Let si = P (αi) be the share of compartment Gi, for i = 1, . . . , m,
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where αi ∈ Zq is publicly associated to compartment Gi. Then, to distribute si

(for every i = 1, . . . , m) among the players in Gi he uses the anonymous secret
sharing scheme Σi. Let

sn1+...+ni−1+1, sn1+...+ni−1+2, . . . , sn1+...+ni−1+ni

be the set of shares for players

Pn1+...+ni−1+1, Pn1+...+ni−1+2, . . . , Pn1+...+ni−1+ni

respectively. Then, D privately sends sn1+...+ni−1+j for j = 1, . . . , ni.
In this way, by construction it is easy to check that Σ realizes a G1, . . . , Gm

compartmented access structure (see Section 2). Thus, a subset not in the
G1, . . . , Gm compartmented access structure obtains no information on the se-
cret, even if they join all their shares.

It only remains to prove that Σ is, in fact, a (t1, . . . , tm)-partially anonymous
secret sharing scheme. To do so, we need to check that Definition 2 is fulfilled.
Indeed, for any secret s and any permutation π : {1, . . . , n} → {1, . . . , n} such
that π(Gi) = Gi

(s1, . . . , sn1 , . . . , sn1+...+ni−1+1, . . . , sn)

is a set of shares for s if and only if

(sπ(1), . . . , sπ(n1), . . . , sπ(n1+...+ni−1+1), . . . , sπ(n))

is a set of shares of s. This easily follows from the fact that the schemes Σi are
anonymous secret sharing schemes; that is, (sn1+...+ni−1+1, . . . , sn1+...+ni−1+ni)
is a set of shares for si if and only if (sπ(n1+...+ni−1+1), . . . , sπ(n1+...+ni−1+ni)) is
a set of shares for si.

By construction, the length of the shares in Σ is lower-bounded by the max-
imum length of the shares of Σi. �	

By [4], the lower bound on the size of the share domain depends multiplica-
tively on the amount n − t for a (t, n) threshold access structure. Then, by
Theorem 1, if G1, . . . , Gm and t1, . . . , tm are chosen in a way that maxi=1,...,m

{ni − ti} < (n − t), the domain of shares of the resulting (t1, . . . , tm)-partially
anonymous secret sharing schemes is lesser than the domain of shares of the
(t, n) threshold secret sharing scheme.

5 Conclusion

Anonymous secret sharing schemes allow a secret to be recovered from shares
regardless of the identity of shareholders. Beyond their intrinsic interest, anony-
mous secret sharing allows anonymous participation in more general crypto-
graphic protocols. A typical application is to make it possible for several parties
to anonymously share the secret key corresponding to a public key.
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Since current constructions of anonymous secret sharing schemes are not very
efficient, we have introduced the notion of partial anonymous secret sharing
schemes in an attempt to relax anonymity requirements to obtain more efficient
constructions. A general construction for such partially anonymous schemes has
also been described.
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