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Abstract. Microaggregation is a special clustering problem where the
goal is to cluster a set of points into groups of at least k points in such a
way that groups are as homogeneous as possible. Microaggregation arises
in connection with anonymization of statistical databases for privacy pro-
tection (k-anonymity), where points are assimilated to database records.
A usual group homogeneity criterion is within-groups sum of squares
minimization SSE. For multivariate points, optimal microaggregation,
i.e. with minimum SSE, has been shown to be NP-hard. Recently, a
polynomial-time O(k3)-approximation heuristic has been proposed (pre-
vious heuristics in the literature offered no approximation bounds). The
special case k = 2 (2-microaggregation) is interesting in privacy protec-
tion scenarios with neither internal intruders nor outliers, because infor-
mation loss is lower: smaller groups imply smaller information loss. For
2-microaggregation the existing general approximation can only guaran-
tee a 36-approximation. We give here a new polynomial-time heuristic
whose SSE is at most twice the minimum SSE (2-approximation).
Keywords: Clustering, Statistical databases, Statistical disclosure con-
trol, Privacy-preserving data mining, Microaggregation.

1 Introduction

Microaggregation [7, 8] is a technique for privacy in statistical databases,
a discipline also known as statistical disclosure control (SDC). It is used to
mask individual records in view of protecting them against re-identification.
More generally, microaggregation can be mathematically modeled as a
special kind of clustering problem where the goal is to cluster a set of p-
dimensional points (the records in the SDC application) into groups of at
least k points in such a way that groups are as homogeneous as possible.
For the sake of concreteness, we talk about records rather than points in
what follows.

Let X be a p-dimensional dataset formed by n records, that is, the re-
sult of observing p attributes on n individuals. Attributes will be assumed



numerical (continuous) in this paper. Microaggregation is operationally
defined in terms of two steps. Given a parameter k, the first step parti-
tions records of X into groups of at least k records each. The second step
replaces each record by the centroid of its group to obtain the masked
dataset X′. In a microaggregated dataset, no re-identification within a
group is possible, because all k records in a group are identical: the best
that an intruder can hope is to track what is the group where a target
individual has been masked into.

Microaggregating with minimum information loss has been known to
be an important —and difficult— issue ever since microaggregation was
invented as an SDC masking method for microdata. However, it was often
argued that optimality in SDC is not just about minimum information
loss but about the best tradeoff between low information loss and low
disclosure risk. The recent application [11] of microaggregation to achieve
k-anonymity [21, 20, 24, 25] for numerical microdata leaves no excuse to
circumvent the problem of trying to reduce information loss as much as
possible: once a value k is selected that keeps the re-identification risk low
enough, the only job left is to k-anonymize (that is, to microaggregate)
with as little information loss as possible.

A partition P such that all of its groups have size at least k is called
a k-partition [8] and microaggregation with parameter k is sometimes
denoted as k-microaggregation.

In [8], optimal microaggregation is defined as the one yielding a k-
partition maximizing the within-groups homogeneity. The rationale is
that, the more homogeneous the records in a group, the less variabil-
ity reduction when replacing those records by their centroid (average
record) and thus the less information loss. The within-groups sum of
squares SSE is a usual measure of within-groups homogeneity in cluster-
ing [27, 12, 15, 16], so a reasonable optimality criterion for a k-partition
P = {G1, . . . , Gg} is to minimize SSE, i.e. to minimize

SSE(P ) =
g∑

i=1

|Gi|∑
j=1

(xij − c(Gi))′(xij − c(Gi))

where |Gi| is the number of records in the i-th group, c(Gi) is the mean
record (centroid) over the i-th group and xij is the j-th record in the i-th
group. It was shown in [8] that groups in the optimal k-partition have
sizes between k and 2k − 1.

The optimal microaggregation problem has been shown to be NP-hard
in the multivariate case, that is, when p > 1 ([19]). Therefore, algorithms
for multivariate microaggregation are heuristic [6, 8, 22, 17, 18].



1.1 Contribution and plan of this paper

In [10], the first approximation algorithm in the literature to optimal
multivariate microaggregation was described. For any integer k ≥ 2, the
SSE of the k-partition P provided by the heuristic given in [10] is shown
to verify

SSE(P ) ≤ 2
⌈

3k − 3
2

⌉
(3k − 3)(2k − 1)SSE(P opt)

where P opt is the optimal k-partition.
When using microaggregation to protect a dataset, the lower k, the

lower SSE and the less information loss caused. Define an internal in-
truder as an intruder who has contributed one or more records to the
dataset. In the presence of internal intruders or outliers, k > 2 should be
chosen, so that an internal intruder cannot exactly guess the contribution
of the other individual in her/his group. However, if internal intruders are
unlikely and there are no outliers, a value as low as k = 2 would do for
anonymity (2-anonymity): groups of records of size between k = 2 and
2k−1 = 3 are formed and each record in a group is replaced by the group
average record (2-microaggregation).

Thus 2-microaggregation is a relevant case deserving specific atten-
tion. For k = 2, the heuristic in [10] guarantees a bound SSE(P ) ≤
36 · SSE(P opt), even though empirical results show that SSE(P ) is usu-
ally well below that bound. We propose in this paper a new heuristic for
2-microaggregation yielding a 2-partition P for which we can prove that
SSE(P ) ≤ 2 · SSE(P opt).

Section 2 gives some background on the minimum-weight [1, 2]-factor
problem and its algorithmic solution. Section 3 presents the 2-approximation
heuristic for 2-microaggregation. The 2-approximation bound is proven in
Section 4. Section 5 gives empirical results on the actual performance of
the 2-approximation heuristic. Section 6 is a conclusion.

2 Background: the minimum-weight [1, 2]-factor problem

Given a graph G = (V,E) and a function w : E → R that assigns a
weight to each edge, the minimum-weight [1, 2]-factor problem consists of
finding the spanning subgraph Fmin of G that satisfies:

– Each node in Fmin has degree 1 or 2
– The sum of weights of edges in Fmin is minimum.



This problem can be solved in strongly polynomial time [23], i.e. in
running time bounded polynomially by a function only of the inherent
dimensions of the problem (number of edges and nodes) and independent
of the sizes of the numerical data. The graph library GOBLIN [13] solves
the minimum weight factor problem over a weighted graph G = (V,E)
(with |V | = n and |E| = m) by transforming the graph into a balanced
flow network NG [14] consisting of n′ = 2n+4 nodes and m′ = 2m+4n+6
edges and solving a minimum weight balanced flow over NG. This solution
determines a minimum weight factor over G. The Enhanced Primal Dual
Algorithm [14] solves this problem in O(n′2m′) time.

In this way, a [1,2]-factor problem over a complete graph G having n
nodes (and n(n− 1)/2 edges) is solved polynomially in O(n4) time.

3 A 2-approximation algorithm for 2-microaggregation

Next, we present a 2-approximation for the multivariate 2-microaggregation
problem. Our solution adapts for 2-microaggregation a corrected version
of the [1] and [2] approach to 2-anonymizing categorical data through
partial suppression. The algorithm in [1] and [2] could not be used as
published, as it relies on [4] to solve a minimum weight [1, 2]-factor, a
problem not dealt with by [4], but by the substantially more recent liter-
ature mentioned in Section 2.

Algorithm 1 (2-µ-Approx)

1. Given a dataset X, build a weighted complete graph G = (V,E) as
follows:
(a) Each record of x ∈ X is mapped to a different vertex v ∈ V.
(b) Given two vertices v, v′ ∈ G corresponding to records x, x′ ∈ X,

the edge vv′ ∈ E (the one linking nodes v and v′) is assigned
weight w(vv′) = d(x, x′)2, where d(x, x′) is the Euclidean distance
between x and x′.

2. Compute the minimum weight [1,2]-factor Fmin of graph G (see Sec-
tion 2). By optimality, Fmin consists only of connected components
with a single edge (two vertices) or two adjacent edges (three vertices).

3. The 2-partition P is obtained by mapping each connected component
in Fmin to the group in P containing the records corresponding to the
vertices in the component.

4. Microaggregate X based on P .



4 The 2-approximation bound

We exploit in this section the properties of Algorithm 2-µ-Approx to prove
that it yields a 2-approximation to optimal 2-microaggregation. We first
give some notation, then a preliminary lemma and finally the theorem
with the approximation bound.

Given a 2-partition P = {G1, . . . , Gg} of X, such that all groups have
size 2 or 3, we denote by SSE(Gi) the within-group sum of squares of
group Gi, that is, SSE(Gi) =

∑|Gi|
j=1(d(xij , c(Gi)))2, where c(Gi) is the

centroid of group Gi.
Consider the complete graph G built in Step 1 of Algorithm 2-µ-

Approx. Define T (Gi) as the minimum-weight component of a [1,2]-factor
of G containing the vertices corresponding to records in Gi. If Gi con-
sists of two records, T (Gi) contains a single edge connecting the two
corresponding vertices. If Gi consists of three records, T (Gi) contains the
minimum-weighted two edges connecting the three corresponding vertices.

Lemma 1. For any group Gi ∈ P consisting of two or three records, it
holds that

1
2
≤ SSE(Gi)

w(T (Gi))
≤ 1

where w(T (Gi)) is the sum of weights of edges in T (Gi).

Proof:

i) Consider a two-record group Gi = {xi1, xi2} and let d(xi1, xi2) be the
Euclidean distance between both records. When microaggregating Gi,
both records will be replaced by their mean vector c(Gi) (i.e., the
centroid of Gi). It holds that

d(xi1, c(Gi)) = d(xi2, c(Gi)) =
d(xi1, xi2)

2

Thus,

SSE(Gi) = 2 ·
(

d(xi1, xi2)
2

)2

=
(d(xi1, xi2))2

2

On the other hand, by construction of the graph G in Algorithm 2-
µ-Approx, we have w(T (Gi)) = (d(xi1, xi2))2. Thus, for any group Gi

with two records it holds that

SSE(Gi)
w(T (Gi))

= 1/2.



ii) Let us now take a three-record group Gi = {xi1, xi2, xi3}. Its corre-
sponding minimum weight tree T (Gi) consists of three vertices vi1, vi2, vi3

and the two minimum-weight edges connecting them. Let us denote
d(xi1, xi2) = d1, d(xi1, xi3) = d2 and d(xi2, xi3) = d3. It is well known
that, in a triangle, the sum of the squared lengths of the sides is
three times the sum of the squared vertex-centroid distances. In our
notation, this equality can be written as

d2
1 + d2

2 + d2
3 = 3 · SSE(Gi) (1)

Without loss of generality, we consider that the edges of T (Gi) are
e1 = vi1vi2 and e2 = vi1vi3. By the minimality of T (Gi) and using
Equation (1), we get

w(T (Gi)) = d2
1 + d2

2 ≤ (2/3)(d2
1 + d2

2 + d2
3) = 2 · SSE(Gi)

Thus,
SSE(Gi)
w(T (Gi))

≥ 1/2

Another fact of elementary geometry is that, for any triangle, the sum
of the squared lengths of any two sides is at least one third of the sum
of the squared lengths of three sides. Using this, we can write

w(T (Gi)) = d2
1 + d2

2 ≥ (1/3)(d2
1 + d2

2 + d2
3) = SSE(Gi)

Thus,
SSE(Gi)
w(T (Gi))

≤ 1

�

Theorem 1 (2-Approximation bound). If P is a 2-partition found by
Algorithm 2-µ-Approx and P opt is the optimal 2-partition, then SSE(P ) ≤
2 · SSE(P opt).

Proof: Consider the minimum weight [1,2]-factor Fmin of graph G
computed at Step 2 of Algorithm 2-µ-Approx. Let us denote its cost, that
is the sum of its edge weights, as w(Fmin). By Lemma 1, for any group
Gi ∈ P it holds that

SSE(Gi) ≤ w(T (Gi)) (2)

Extending Inequality (2) for all Gi ∈ P and taking into account that
T (Gi) are the components of Fmin, we get

SSE(P ) ≤ w(Fmin) (3)



Let us now take the optimal k-partition P opt for the dataset X. For each
group Gopt

i ∈ P opt, we take its corresponding vertices in G and con-
nect them with one edge (if Gopt

i consists of two records) or the two
minimum-weighted adjacent edges (if Gopt

i consists of three records); call
the resulting graph component T (Gopt

i ). The union of all T (Gopt
i ) is a

non-minimum weight [1,2]-factor F for G. By Lemma 1 we know that
w(T (Gopt

i )) ≤ 2 · SSE(Gopt
i ). Applying this inequality to all clusters, we

get
w(F) ≤ 2 · SSE(P opt) (4)

On the other hand, by definition of minimum weight [1,2]-factor

w(Fmin) ≤ w(F) (5)

If we combine Inequalities (3),(4) and (5), the 2-approximation bound of
the theorem follows. �

5 Empirical results

We will show in this section that the new 2-approximation heuristic can
perform even better than the best microaggregation heuristics in the lit-
erature in terms of low within-groups sum of squares SSE. We have used
two reference datasets from the European project ”CASC” [3]:

– The ”Tarragona” dataset contains 834 records with 13 numerical at-
tributes corresponding to financial information on 834 companies lo-
cated in the area of Tarragona, Catalonia. The ”Tarragona” dataset
was used in the ”CASC” project and in [8, 18, 10].

– The ”EIA” dataset contains 4092 records with 11 numerical attributes
(plus two additional categorical attributes not used here). This dataset
was used in the ”CASC” project and in [5, 10] and partially in [18]
(an undocumented subset of 1080 records from ”EIA”, called ”Creta”
dataset, was used in the latter paper). For the sake of speed, we have
used in our experiments reported below a block with only the first 600
records of the ”EIA” dataset; we call ”EIA-600” the resulting dataset.

Table 1 gives the information loss under various methods for different
values of k. For each case, SSE and LSSE = 100× SSE/SST are given,
where SST is the total sum of squares (sum of squared Euclidean dis-
tances from all records to the dataset centroid). The advantage of LSSE

is that it is bounded within the interval [0, 100]. The methods considered
in the comparison include the best heuristics in the literature, according
to the comparison in [10], namely:



– An improved version of the heuristic in [8] called MDAV (Maximum
Distance to Average Vector, [11]). MDAV is the microaggregation
method implemented in the µ-Argus package [17] resulting from the
”CASC” project.

– The µ-Approx general approximation heuristic described in [10].
– The 2-µ-Approx heuristic proposed in this paper.

It can be seen that 2-µ-Approx yields the lowest SSE for the ”Tarrag-
ona” dataset. For the ”EIA-600” dataset, 2-µ-Approx ranks second after
MDAV. Anyway, the differences in terms of LSSE are not really mean-
ingful. Furthermore, note that even if MDAV can slightly outperform the
approximation heuristics for particular datasets, the latter have the ad-
vantage of always guaranteeing an SSE within a known multiple of the
minimum SSE; this is especially valuable when that multiple is as small
as twice the minimum SSE, as is the case for 2-µ-Approx.

The price paid to get the 2-approximation is that, since 2-µ-Approx
basically requires to solve a minimum-weight [1, 2]-factor, it runs in time
O(n4) (see Section 2), whereas MDAV and the general approximation µ-
Approx run in O(n2). For example, the time needed to run 2-µ-Approx
on the EIA-600 dataset is 81 minutes and 17 seconds, whereas MDAV
and mu-Approx take a few seconds. Nonetheless, this is less painful than
it would appear at first sight: all heuristics being at least quadratic-time,
blocking attributes must always be used to microaggregate large datasets,
so the only adaptation needed to run an O(n4) heuristic is to take smaller
blocks.

Table 1. Information loss measures for the ”Tarragona” and ”EIA-600” datasets under
various microaggregation heuristics (k = 2)

Method SSE LSSE

”Tarragona” MDAV 1005.59 9.27499
µ-Approx 1148.32 10.5914

2-µ-Approx 958.496 8.84058

”EIA-600” MDAV 59.2535 1.06927
µ-Approx 66.8219 1.20585

2-µ-Approx 65.8851 1.18895

Finally, we give some experimental results on how close to optimality
are the partitions obtained using 2-µ-Approx. In order to be able to find



the optimal 2-partition by exhaustive search, we are constrained to using
very small datasets. We have taken the third reference dataset in [3], called
”Census”, which contains 1080 records with 13 numerical attributes and
was used in the CASC project and [9, 5, 28, 18, 11, 10]. From the ”Census”
dataset, we have drawn 10 random samples of n = 15 records with p = 13
attributes each. Those samples have been 2-microaggregated optimally by
exhaustive search and also heuristically using 2-µ-Approx. For each sam-
ple, Table 2 shows the optimal SSE, the SSE obtained with 2-µ-Approx
and the ratio between the former and the latter. It can be seen that such a
ratio is 1 or close to 1 in all cases. Thus, even if the approximation bound
only guarantees that the SSE obtained with 2-µ-Approx is no more than
twice the optimum, it actually tends to be very close to the optimum.

Table 2. Optimal SSE vs SSE obtained with 2-µ-Approx (k = 2) for 10 random
samples drawn from the ”Census” dataset (n = 15 and p = 13).

Sample Optimal SSE SSE 2-µ-Approx Ratio

1 12.042 12.042 1
2 12.2066 12.8186 0.9522
3 14.8156 14.8156 1
4 12.5545 12.5545 1
5 51.6481 52.0665 0.9920
6 74.1998 74.1998 1
7 15.6783 16.5705 0.9462
8 9.9702 9.9702 1
9 21.4293 22.7064 0.9438
10 33.3882 33.3882 1

6 Conclusion

The polynomial-time 2-approximation presented here improves for k = 2
on the general O(k3)-approximation for multivariate microaggregation.
Even though 2-microaggregation is not usable if internal intruders are
likely or outliers are present, it can be an interesting option to implement
2-anonymity in other cases, because it results in low information loss and
thus in high data utility. Thus, the availability of a 2-approximation for
2-microaggregation is relevant. Suggested directions for future research
include: i) to devise heuristics that, for specific values of k other than



2, provide better approximations than the general O(k3)-approximation;
ii) to adapt Algorithm 2-µ-Approx to come up with an approximation to
2-microaggregation of non-numerical (categorical) microdata (categorical
microaggregation was defined in [26]).
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