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Abstract In e-healthcare record systems (EHRS), attribute-
based encryption (ABE) appears as a natural way to achieve
fine-grained access control on health records. Some propos-
als exploit key-policy ABE (KP-ABE) to protect privacy in
such a way that all users are associated with specific access
policies and only the ciphertexts matching the users’ access
policies can be decrypted. An issue with KP-ABE is that it
requires an a priori formulation of access policies during
key generation, which is not always practicable in EHRS
because the policies to access health records are sometimes
determined after key generation. In this paper, we revisit KP-
ABE and propose a dynamic ABE paradigm, referred to as
access policy redefinable ABE (APR-ABE). To address the
above issue, APR-ABE allows users to redefine their access
policies and delegate keys for the redefined ones; hence a
priori precise policies are no longer mandatory. We con-
struct an APR-ABE scheme with short ciphertexts and prove
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its full security in the standard model under several static as-
sumptions.
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1 Introduction

Attribute-based encryption (ABE) provides fine-grained ac-
cess control over encrypted data by using access policies
and attributes embedded in secret keys and ciphertexts. ABE
cryptostems [19] fall into two categories: key-policy ABE
(KP-ABE) [8] systems and ciphertext-policy ABE (CP-ABE)
[3] systems. In a CP-ABE system, the users’ secret keys are
associated with sets of attributes, and a sender generates a ci-
phertext with an access policy specifying the attributes that
the decryptors must have. Alternatively, in a KP-ABE sys-
tem, the users’ secret keys are labeled with access policies
and the sender specifies a set of attributes; only the users
whose access policies match the attribute set can decrypt.

ABE requires a priori access policies, which are not al-
ways available. This may limit its applications in practice.
The following scenario illustrates our point.

In an e-healthcare record system (EHRS), Alice’s health
records are encrypted by the doctors whom she consulted
before. When Alice authorizes some doctors to access her
encrypted medical records, she may have no sufficient ex-
pertise to precisely determine which doctors should access
the records. Instead, according to her experience and com-
mon sense, she may specify a policy saying that the doctor
ought to be medicine professor with five-year working expe-
rience from the hospitals she knows. After a matching doc-
tor Bob sees Alice’s medical materials, Bob finds that Alice
has something wrong with her heart. Hence, a cardiologist’s
advice must be sought; thus, a cardiologist (who can be a
professor or not) must be allowed to see Alice’s documents.
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In this application, the main obstacle to apply ABE is
that Alice, serving as the key generation authority, cannot
generate secret keys for access policies that are a priori “carv-
ed in stone”, because she does not clearly know which ex-
perts are necessary for her diagnosis.

In fact, the access policy must be dynamically modified.
That is, authorized users must be able to redefine their ac-
cess policies and then delegate secret keys for the redefined
access policies to other users. For instance, in the above mo-
tivating scenario, Alice first authorizes doctors with some
general attributes to access her encrypted medical records.
After the matching doctor makes a preliminary diagnosis
and finds something wrong with Alice’s heart, the doctor
redefines his access policy to involve some special attributes
(e.g. specialty: cardiologist) and delegates to the doctor with
the redefined access policy. In this way, a priori precise ac-
cess policies are not mandatory during key generation be-
cause they can be later redefined in delegation.

There are already some ABE schemes supporting dele-
gation. The CP-ABE schemes in [3,7,21] allow users to del-
egate more restricted secret keys, that is, keys for attribute
sets that are subsets of the original ones. In KP-ABE, the
schemes proposed in [8,13,6,18] provide a delegation mech-
anism, but all of them require that the access policy to be
delegated be more restrictive. This limited delegation func-
tionality is often insufficient: for example, in the motivating
application above Bob should be able to delegate to a car-
diologist even if Bob is not a cardiologist himself. Limiting
the user to delegating keys for other users associated with
more restrictive access policies is too rigid.

The challenge of providing appropriate delegation for
the applications above has to do with the underlying secret
sharing scheme. In most KP-ABE schemes ([8,13,18]), se-
cret sharing schemes are employed to share a secret in key
generation and reconstruct the secret during decryption. In
the key generation, each attribute involved in the access pol-
icy needs to be associated with a secret share. If there are
new attributes in the target access policy to be delegated
to, users cannot delegate a secret key for the access pol-
icy since they are unable to generate shares for the new at-
tributes without knowing the secret. This is why the above
mentioned KP-ABE schemes require the delegated access
policy to be more restrictive than the original one. This hin-
ders applying them for the motivating application, where the
doctor with general attributes would like to delegate his ac-
cess rights to a doctor associated with new special attributes.

1.1 Our Work

We propose a dynamic primitive referred to as access policy
redefinable ABE (APR-ABE). The functional goal of APR-
ABE is to provide a more dynamic delegation mechanism.
In an APR-ABE system, users can play the role of the key

generation authority by delegating secret keys to their subor-
dinates. The delegation does not require the redefined access
policy to be more restrictive than the one of the delegating
key.

Noting that attributes are very often hierarchically re-
lated in the real word, we arrange the attribute universe of
APR-ABE in a matrix. For example, we can place the at-
tribute “Internal medicine” at a higher level of the matrix
than the attribute “Cardiologist”. Due to this arrangement,
the notion of attribute vector naturally comes up: an attribute
vector can be generated by picking single attributes from up-
per levels to lower levels. By using attribute vectors, we can
realize a delegation that allows new attributes to be added
into the original access policy and a secret key to be del-
egated for the resulting policy. This delegation is similar to
the one of hierarchical identity-based encryption (HIBE,[4]),
but with the difference that only delegation to the attributes
consistent with the attribute matrix is allowed.

We present an APR-ABE framework based on KP-ABE
and define its full security. In APR-ABE, the users’ secret
keys are associated with an access structure formalized by
attribute vectors. Users at higher levels can redefine their
access structures and then delegate secret keys to others in
lower levels without the constraint that the redefined access
structures of the delegated keys be more restrictive. Cipher-
texts are generated with sets of attribute vectors, and decryp-
tion succeeds if and only if the attribute set of a ciphertext
satisfies the access structure associated with a secret key,
just as in the ordinary KP-ABE. In full security, a strong
security notion in ABE systems, an adversary is allowed to
access public keys, create attribute vectors and query secret
keys for specified access structures. Full security states that
not even such an adversary can get any useful information
about the plaintext encrypted in a ciphertext, provided that
he does not have the correct decryption key.

We construct an APR-ABE scheme by employing a lin-
ear secret sharing scheme (LSSS). An LSSS satisfies lin-
earity, that is, new shares generated by multiplying exist-
ing shares by random factors can still reconstruct the secret.
Hence, when delegating to new attributes, we create new at-
tribute vectors by combining new attributes with existing at-
tribute vectors and we generate shares for new attribute vec-
tors by randomizing the shares of the existing vectors. In
this way, all attribute vectors in the redefined access struc-
ture will obtain functional shares and the access structure
need not to be more restrictive than the one of the delegating
key. One may attempt to trivially construct APR-ABE from
HIBE by directly setting each attribute vector as the iden-
tity vector in HIBE. However, this trivial construction would
suffer from collusion attacks because a coalition of users
may collude to decrypt ciphertexts sent to none of them,
even though the access structure of none of the colluders
matches the attribute sets of the concerned ciphertexts. The
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proposed APR-ABE scheme withstands this kind of collu-
sion attack by associating random values to the secret keys
of users. The proposed APR-ABE scheme has short cipher-
texts and is proven to be fully secure in the standard model
under several static assumptions.

APR-ABE can provide an efficient solution to the mo-
tivating application. General attributes can be placed in the
first level and more specific, professional attributes in the
next level. Alice authorizes doctors to access her medical
records by specifying access policies in terms of general
attributes. These authorized doctors can redefine their ac-
cess policies in terms of professional attributes and they can
delegate keys to other doctors. The matching doctors then
can read Alice’s records if their general and specific profes-
sional attributes match those specified by the doctors who
encrypted Alice’s health records.

1.2 Applying APR-ABE to EHR Systems

Our APR-ABE can be applied to EHR systems to circum-
vent the issue of a priori formulation of access policies. The
APR-ABE solution relies on cleverly designed attribute hi-
erarchies. We can arrange the attribute universe in a matrix
such that general attributes like hospital name (for exam-
ple “Hospital A”, “Hospital B”), title (for example “Profes-
sor”) or working years are placed in the first level, while spe-
cific professional attributes of doctors (typically their med-
ical specialty, with values like “Cardiologist”, “Gastroen-
terologist”, etc.) are placed in the next level. When delegat-
ing, doctors matching general attributes can redefine their
access policies in terms of professional attributes. We now
describe how does APR-ABE work for such setting in an
EHR system.

As depicted in Fig. 1, an EHR system employs a health
record repository to store patients’ health records. To pro-
tect privacy, all health records are encrypted by doctors who
make diagnoses. Suppose that Alice’s health records are en-
crypted with an attribute set S ={Hospital A, Cardiologist,
Professor, Working years≥ 3}. When Alice feels sick, she
wants to authorize some doctors to read her health records.
However, she may not know what exact experts are neces-
sary for her diagnosis. Instead of generating secret keys for
all doctors of Hospital A, Alice specifies an access policy
A ={Hospital A AND Professor AND Working years≥ 5}
and generates a secret key SKA for a doctor matching this
access policy. The matching doctor then makes a prelimi-
nary diagnosis on Alice’s health records. Upon finding that
Alice has a heart condition, the doctor redefines the access
policy A to seek greater specialization, A′ ={{Hospital A,
Cardiologist}AND Professor AND Working years≥ 7} and
delegates a secret key for A′. Since the set S associated with
Alice’s health records satisfies access structure A′, the doc-
tor with A′ can decrypt and read Alice’s health records. We

Fig. 1 Application to EHR systems

note that the pair of attributes {Hospital A, Cardiologist}
that appears in A′ is treated as an attribute vector in our
APR-ABE. Thus in the redefinition of A as A′, the new at-
tribute “Cardiologist” can be added, that is, the delegation is
not more restrictive.

1.3 Paper Organization

The rest of this paper is organized as follows. We recall the
related work in Section 2. Section 3 reviews the necessary
background for our APR-ABE construction. We formalize
the APR-ABE and define its security in Section 4. Section
5 proposes an APR-ABE and proves its security in the stan-
dard model. Finally, we conclude the paper in Section 6.

2 Related Work

ABE is a versatile cryptographic primitive allowing fine-
grained access control over encrypted files. ABE was intro-
duced by Sahai and Waters [19]. Goyal et al. [8] formu-
lated two complementary forms of ABE, i.e., Key-Policy
ABE and Ciphertext-Policy ABE, and presented the first
KP-ABE scheme. The first CP-ABE scheme was proposed
by Bethencourt et al. in [3], although its security proof re-
lies on generic bilinear group model. Ostrovsky et al. [17]
developed a KP-ABE scheme to handle any non-monotone
structure; hence, negated clauses can be included in the poli-
cies. Waters [21] presented a CP-ABE construction that al-
lows any attribute access structure to be expressed by a Lin-
ear Secret Sharing Scheme (LSSS). Attrapadung et al. [1]
gave a KP-ABE scheme permitting non-monotone access
structures and constant-size ciphertexts. To reduce decryp-
tion time, Hohenberger and Waters [9] presented a KP-ABE
with fast decryption.
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The flexible encryption property of ABE made it widely
adopted in e-healthcare record systems. Li et al. [15] lever-
aged ABE to encrypt personal health records in cloud com-
puting and exploited multi-authority ABE to achieve a high
degree of privacy of records. Yu et al. [24] adopted and
tailored ABE for wireless sensors of e-healthcare systems.
Liang et al. [16] also applied ABE to secure private health
records in health social networks. In their solution, users can
verify each other’s identifiers without seeing sensitive at-
tributes, which yields a high level of privacy. Noting that the
application of KP-ABE to distributed sensors in e-healthcare
systems introduces several challenges regarding attribute and
user revocation, Hur [10] proposed an access control scheme
using KP-ABE that has efficient attribute and user revoca-
tion capabilities.

In order to allow delegation of access rights to encrypted
data, some ABE schemes support certain key delegation.
CP-ABE [3,7,21] allow users to delegate to attribute sets
that are subsets of the original ones. Since a secret sharing
scheme is used in key generation, the delegation of KP-ABE
is more complicated. Goyal et al. [8] adopted Lagrange in-
terpolation to realize secret sharing and achieved a KP-ABE
with selective security. This scheme supports key delegation
while requiring the tree structures of delegated keys to be
more restrictive than the one of the delegating key when
new attributes are introduced. Lewko and Waters [13] pre-
sented a fully secure KP-ABE which employs a more gen-
eral LSSS matrix to realize secret sharing. This KP-ABE
allows key delegation while requiring the redefined access
policy to be either equivalent to the original access policy or
more restrictive when new attributes need to be added. The
KP-ABE in [18] is an improvement of Lewko and Waters’
KP-ABE and inherits its delegation, which is hence limited
as well. Recently, Boneh et al. [6] proposed an ABE where
access policies are expressed as polynomial-size arithmetic
circuits. Their system supports key delegation but the size
of the secret keys increases quadratically with the number
of delegations.

There are some works resolving delegation in different
applications. To achieve both fine-grained access control and
high performance for enterprise users, Wang et al. [23] pro-
posed a solution that combines hierarchical identity-based
encryption with CP-ABE to allow a performance-expressivity
tradeoff. In that scheme, various authorities rather than at-
tributes are hierarchically organized in order to generate keys
for users in their domains. Wan et al. [22] extended ciphertext-
policy attribute-set-based encryption with a hierarchical struc-
ture of users to achieve scalability and flexibility for ac-
cess control in cloud computing systems. Li et al. [14] en-
hanced ABE by organizing attributes in a tree-like structure
to achieve delegation, which is similar to our arrangement
of attributes; however, their delegation is still limited to in-
creasingly restrictive access policies. Besides, the security

of the proposed scheme is only selective. Indeed, all these
schemes are proposed to adapt ABE for specific applica-
tions, while our APR-ABE aims at permitting users to rede-
fine their access policies and delegate secret keys in a way
that does not need to be increasingly restrictive.

3 Preliminaries

In this section, we overview access structures, linear secret
sharing schemes (LSSS), the composite-order bilinear group
equipped with a bilinear map, and several complexity as-
sumptions.

3.1 Access Structures [2]

Definition 1 Let {P1, P2, · · · , Pn} be a set of parties. A
collection A ⊆ 2{P1,P2,··· ,Pn} is monotone if for ∀B,C,
we have that C ∈ A holds if B ∈ A and B ⊆ C. An access
structure (respectively, monotone access structure) is a col-
lection (respectively, monotone collection) A of non-empty
subsets of {P1, P2, ..., Pn}, i.e., A ⊆ 2{P1,P2,··· ,Pn}\{∅}.
The sets in A are called the authorized sets, and the sets not
in A are called the unauthorized sets.

In traditional KP-ABE, the role of the parties is played
by the attributes. In our APR-ABE, the role of the parties
is taken by attribute vectors. Then an access structure is a
collection of sets of attribute vectors. We restrict our atten-
tion to monotone access structures in our APR-ABE. How-
ever we can realize general access structures by having the
negation of an attribute as a separate attribute, at the cost of
doubling the number of attributes in the system.

3.2 Linear Secret Sharing Schemes [2]

Definition 2 A secret-sharing scheme Π over a set of par-
ties P is called linear (over Zp) if

1. The shares for each party form a vector over Zp.
2. There exists a matrix A called the share-generating ma-

trix for Π , where A has l rows and n columns. For all
i = 1, · · · , l, the i-th row of A is labeled by a party ρ(i),
where ρ is a function from {1, · · · , l} to P . When we
consider the column vector s = (s, s2, · · · , sn), where
s ∈ Zp is the secret to be shared, and s2, · · · , sn ∈ Zp
are randomly chosen, then As is the vector of l shares of
the secret s according to Π . Let Ai denote the i-th row
of A, then λi = Ais is the share belonging to party ρ(i).

Linear Reconstruction. [2] shows that every LSSS Π en-
joys the linear reconstruction property. Suppose Π is the
LSSS for access structure A and S is an authorized set in A,
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i.e., A contains S. There exist constants {ωi ∈ Zp} which
can be found in time polynomial in the size of the share-
generating matrix A such that if {λi} are valid shares of
s, then

∑
i∈I ωiλi = s, where I = {i : ρ(i) ∈ S} ⊆

{1, · · · , l}.

3.3 Composite-order Bilinear Groups

Suppose that G is a group generator and ` is a security pa-
rameter. Composite-order bilinear groups [5] can be defined
as (N = p1p2p3,G,GT , e) ← G(1`), where p1, p2 and p3

are three distinct primes, both G and GT are cyclic groups
of order N and the group operations in both G and GT are
computable in time polynomial in `. A map e : G×G→ GT
is an efficiently computable map with the following proper-
ties.

1. Bilinearity: for all a, b ∈ ZN and g, h ∈ G, e(ga, hb) =

e(g, h)ab.
2. Non-degeneracy: ∃g ∈ G such that e(g, g) has order N

in GT .

Let Gij denote the subgroup of order pipj for i 6= j, and
G1,G2, G3 the subgroups of order p1, p2, p3 in G, respec-
tively. The orthogonality property of G1,G2,G3 is defined
as:

Definition 3 For all u ∈ Gi, v ∈ Gj , it holds that e(u, v) =

1, where i 6= j ∈ {1, 2, 3}.

The orthogonality property is essential in our constructions
and security proofs.

3.4 Complexity Assumptions

We now list the complexity assumptions which will be used
to prove the security of our scheme. These assumptions were
introduced by [12] to prove fully secure HIBE and they were
also employed by some ABE schemes (e.g., [11,13]) to at-
tain full security.

Assumption 1 Let (N = p1p2p3,G,GT , e)
R← G(1`). De-

fine a distribution

g
R← G1;X3

R← G3; D = (G, g,X3); T1
R← G1; T2

R← G12.

The advantage of an algorithm A in breaking Assumption 1
is defined as

Adv1A(`) = |Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]|.

Assumption 1 holds if Adv1A(`) is negligible in ` for any
polynomial-time algorithm A.

Assumption 2 Let (N = p1p2p3,G,GT , e)
R← G(1`). De-

fine a distribution

g,X1
R← G1, X2, Y2

R← G2, X3, Y3
R← G3,

D = (G, g,X1X2, X3, Y2Y3), T1
R← G, T2

R← G13.

The advantage of an algorithm A in breaking Assumption 2
is defined as

Adv2A(`) = |Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]|.

Assumption 2 holds if any polynomial-time algorithmA has
Adv2A(`) negligible in `.

Assumption 3 Let (N = p1p2p3,G,GT , e)
R← G(1`). De-

fine a distribution

α, s
R← ZN , g

R← G1, X2, Y2, Z2
R← G2, X3

R← G3,

D = (G, g, gαX2, X3, g
sY2, Z2), T1 = e(g, g)αs, T2

R← GT .

The advantage of an algorithm A in breaking Assumption 3
is defined as

Adv3A(`) = |Pr[A(D, T1) = 1]− Pr[A(D, T2) = 1]|.

Assumption 3 holds if any polynomial-time algorithmA has
Adv3A(`) negligible in `.

4 Modeling Access Policy Redefinable Attribute-based
Encryption

4.1 Notations

We now model the APR-ABE system. First, we introduce
some notations used in the description. Observing that the
hierarchical property exists among attributes in the real world,
we arrange the APR-ABE attribute universe U in a matrix
with L rows and D columns, that is,

U = (ui,j)L×D = (U1, · · · , Ui, · · · , UL)T ,

where Ui is the i-th row of U and contains D attributes and
MT denotes the transposition of a matrix M. We note that
there may be some empty attributes in the matrix. In that
case, we use a special character “∅” to denote the empty
attributes.

The attribute matrix naturally leads to the notion of at-
tribute vector. We define an attribute vector of depth k (1 ≤
k ≤ L) as

u = (u1, u2, ..., uk),

where ui ∈ Ui for each i from 1 to k. This means that an
attribute vector of depth k is formed by sampling single at-
tributes from the first level to the k-th level. We note that
each attribute ui actually corresponds to two subscripts (i, j)
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denoting its position in the attribute matrix, but we drop the
second subscript j here to simplify notations.

We next define a set of attribute vectors. Let S = {u}
denote a set of attribute vectors of depth k and |S| denote
the set’s cardinality.

For an attribute vector u′ of depth i and another attribute
vector u of depth k, we say that u′ is a prefix of u if u =

(u′, ui+1, ui+2, ..., uk), where 1 ≤ i < k ≤ L.
As in Definition 1, we can define A as an access structure

over attribute vectors of depth k such that A is a collection of
non-empty subsets of the set of all attribute vectors of depth
k. If for a set S the condition S ∈ A holds, then we say that
S is an authorized set in A and S satisfies A.

In an APR-ABE system, a secret key associated with an
access structure A can decrypt a ciphertext generated with a
set S of attribute vectors if and only if S ∈ A. A secret key
associated with an access structure A′ is allowed to delegate
a secret key for an access structure A if these two access
structures satisfy a natural condition. That is, each attribute
vector of a set S′ ∈ A′ must be a prefix of an attribute vector
in some set S ∈ A and all attribute vectors involved in A
have prefixes in A′. This guarantees that the user with access
structure A′ can use his existing shares to generate shares
for attribute vectors of authorized sets in A. We note that
in the delegation there is no requirement that the redefined
access structure A must be more restrictive than the original
access structure A′ when new attributes are added. This is
because those new attributes can be concatenated to the end
of existing attribute vectors of A′ instead of being treated
as new separate attributes that need to be assigned to new
secret shares.

4.2 System Model

An APR-ABE system for message space M and access struc-
ture space Γ consists of the following five polynomial-time
algorithms:

– (PK,MSK) ← Setup(1`): The setup algorithm takes
no input other than the security parameter ` and outputs
the public key PK and a master secret key MSK.

– CT ← Encrypt(M,PK,S): The encryption algorithm
takes as inputs a message M , the public key PK and a
set S of attribute vectors. It outputs a ciphertext CT .

– SK ← KeyGen(PK,MSK,A): The key generation
algorithm takes as inputs an access structure A, the mas-
ter secret key MSK and public key PK. It outputs a
secret key SK for the access structure A.

– SK ← Delegate(PK,SK ′,A): The delegation algo-
rithm takes as inputs a public key PK, a secret key SK ′

for an access structure A′ and another access structure
A. It outputs the secret key SK for A if and only if A
and A′ satisfy the delegation condition.

– M/⊥ ←Decrypt(CT, SK,PK): The decryption algo-
rithm takes as inputs a ciphertext CT associated with a
set S of attribute vectors, a secret key for an access struc-
ture A, and the public key PK. If S ∈ A, it outputs M ;
otherwise, it outputs a false symbol ⊥.

The correctness property requires that for all sufficiently
large ` ∈ N, all universe descriptions U, all (PK,MSK)←
Setup(1`), all A ∈ Γ , all SK ← KeyGen(PK,MSK,A)

or SK ← Delegate(PK,SK ′,A), allM ∈M, all CT ←
Encrypt(M,PK,S), if S satisfies A, then Decrypt(CT,

SK,PK) outputs M .

4.3 Security

We now define the full security against chosen access struc-
ture and chosen-plaintext attacks in APR-ABE. In practice,
malicious users are able to obtain the system public key and,
additionally, they may collude with other users by querying
their secret keys. To capture these realistic attacks, we define
an adversary allowed to access the system public key, create
attribute vectors and query secret keys for access structures
he specifies. The adversary outputs two equal-length mes-
sages and a set of attribute vectors to be challenged. Then
the full security states that not even such an adversary can
distinguish with non-negligible advantage the ciphertexts of
the two messages under the challenge set of attribute vec-
tors, provided that he has not queried the secret keys that
can be used to decrypt the challenge ciphertext. Formally,
the full security of APR-ABE is defined by a game played
between a challenger C and an adversary A as follows.

– Setup: The challenger C runs the setup algorithm and
gives the public key PK to A.

– Phase 1:A sequentially makes queries Q1, ..., Qq1 to C,
where Qi for 1 ≤ i ≤ q1 is one of the following three
types:

– Create(A). A specifies an access structure A. In re-
sponse, C creates a key for this access structure by
calling the key generation algorithm, and places this
key in the set K which is initialized to empty. He
only gives A a reference to this key, not the key it-
self.

– Delegate(A,A′). A specifies a key SK ′ associated
with A′ in the set K and an access structure A. If
allowed by the delegation algorithm, C produces a
key SK for A. He adds SK to the set K and again
gives A only a reference to it, not the actual key.

– Reveal(A). A specifies a key in the set K. C gives
this key to the attacker and removes it from the set
K.

– Challenge: A declares two equal-length messages M0

and M1 and a set S∗ of attribute vectors with an added
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restriction that for any revealed key SK for access struc-
ture A, S∗ 6∈ A and for any new key SK ′ for access
structure A′ that can be delegated from a revealed one,
S∗ 6∈ A′. C then flips a random coin b ∈ {0, 1}, and en-
crypts Mb under S∗, producing CT ∗. He gives CT ∗ to
A.

– Phase 2: A sequentially makes queries Qq1+1, ..., Qq to
C just as in Phase 1, with the restriction that neither the
access structure of any revealed key nor the access struc-
ture of any key that can be delegated from a revealed one
contain S∗.

– Guess: A outputs a guess b′ ∈ {0, 1}.

The advantage of A in this game is defined as

AdvAPR-ABE
A = |Pr[b = b′]− 1/2|.

We note that the model above is for chosen-plaintext at-
tacks and one can easily extend this model to handle chosen-
ciphertext attacks by allowing decryption queries in Phase 1
and Phase 2.

Definition 4 We say that an APR-ABE system is fully se-
cure if all Probabilistic Polynomial-Time (PPT) attackers A
have at most a negligible advantage in the above game.

5 The Access Policy Redefinable Attribute-based
Encryption Scheme

In this section, we construct an APR-ABE with short cipher-
texts. The proposed scheme is proven to be fully secure in
the standard model.

5.1 Basic Idea

We first introduce the basic idea driving the construction of
the APR-ABE scheme. We base the scheme on the KP-ABE
scheme in [11] and we exploit the delegation mechanism
used in several HIBE schemes (e.g., [4,12]). The key point
of this delegation mechanism is to hash an identity vector
to a group element, which internally associates the identity
vector with a ciphertext or a secret key. When introducing
this mechanism into our APR-ABE, which involves multiple
attribute vectors in a ciphertext or a secret key, we assign a
key component to each attribute vector and randomize every
key component to resist collusion attacks.

On the other hand, LSSS have been widely used in many
ABE schemes [1,11,13,21]. In our APR-ABE scheme, an
LSSS is used to generate a share for each attribute vector
of authorized sets in an access structure. The linear recon-
struction property of LSSS guarantees that the shares of all
attribute vectors in an authorized set can recover the secret.

To realize a delegation not limited to more restrictive access
policies, we must additionally manage to generate shares
for new incoming attributes. However, without knowing the
secret, delegators cannot directly generate new shares. To
overcome this problem, we concatenate the new incoming
attributes to the end of existing attribute vectors to form
new attribute vectors and use the existing shares to generate
shares for the new attribute vectors. Specifically, to achieve
the access structure control, each share of an attribute vec-
tor is blinded in the exponent of a key component. Then, to
generate new shares, we lift a key component of an exist-
ing attribute vector to the power of a random exponent and
define the resulting exponent as the new blinded share for
the new attribute vector. Since LSSS satisfies linearity, the
randomization of shares can still reconstruct the secret.

To realize the above idea, we slightly extend LSSS to
handle attribute vectors. For an access structure A, we gen-
erate an l×n share-generating matrix A (l is the number of
attribute vectors involved in A). The inner product of the i-
th row vector of A and a vector taking the secret as the first
coordinate is the share for the i-th row. We define an injec-
tion function ρ which maps the i-th row of the matrix A to
an attribute vector. Then (A, ρ) is the LSSS for A. The in-
jection function means that an attribute vector is associated
with at most one row of A.

5.2 The Proposal

We are now ready to describe our APR-ABE scheme, which
is built from bilinear groups of a composite order N =

p1p2p3, as defined in Section 2.3. The ciphertexts are gener-
ated in the subgroup G1. The keys are first generated in G1

and then randomized in G3. The subgroup G2 is only used
to implement semi-functionality in the security proofs.

– (PK,MSK)← Setup(1`): Run (N = p1p2p3,G,GT ,
e)

R← G(1`). Let Gi denote the subgroup of order pi for
i = 1, 2, 3. Choose random generators g ∈ G1, X3 ∈
G3. Choose random elements α ∈ ZN , vi, hj ∈ G1 for
all i = 1, · · · , D and j = 1, · · · , L. The public key and
the master secret key arei

PK = (U, N, g,X3, v1, · · · , vD, h1, · · · , hL, e(g, g)α) ,

MSK = α.

– CT ← Encrypt(M,PK,S): Encrypt a message M un-
der a set S of attribute vectors of depth k. Choose a ran-
dom s ∈ ZN and compute

C = Me(g, g)αs, E = gs.

For each j from 1 to |S|, choose a random element tj ∈
ZN . Recall that for each attribute vector u = (u1, u2, ..., uk)

of S, the first coordinate u1 actually has two subscripts,
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denoted by (1, x), representing that u1 is the x-th entry
of the first row in the attribute matrix. Then, choose vx
corresponding to x from the public key and compute

Cj,0 = vsx (hu1
1 · · · h

uk
k )

stj , Cj,1 = gstj .

Define the ciphertext (including S) as

CT =
(
C,E, 〈Cj,0, Cj,1〉j=1,...,|S|

)
.

– SK ← KeyGen(PK,MSK,A): The algorithm gener-
ates an LSSS (A, ρ) for A, where A is the share-generating
matrix with l rows and n columns, and ρ maps each row
of A to an attribute vector of depth k. Choose n − 1

random elements s2, · · · , sn ∈ ZN to form a vector

α = (α, s2, · · · , sn).

For each i from 1 to l, compute λi = Aiα, where Ai
is the i-th row vector of A. Let u = (u1, ..., uk) be
the attribute vector mapped by ρ from the i-th row. As-
sume that the first coordinate u1 of u is the x-th entry of
the first row in the attribute matrix and choose vx corre-
spondingly. Then, select random elements ri ∈ ZN and
Ri,0, Ri,1, Ri,2, Ri,k+1, · · · , Ri,L ∈ G3 to compute

Ki,0 = gλivrix Ri,0, Ki,1 = griRi,1,

Ki,2 = (hu1
1 · · ·h

uk
k )riRi,2,

Ki,k+1 = hrik+1Ri,k+1, · · · , Ki,L = hriLRi,L.

Set the secret key (including (A, ρ)) to be

SK = 〈Ki,0,Ki,1,Ki,2,Ki,k+1, · · · ,Ki,L〉i=1,...,l.

– SK ← Delegate(PK,SK ′,A): The algorithm gener-
ates a secret key SK for A by using the secret key

SK ′ = 〈K ′i′,0,K ′i′,1,K ′i′,2,K ′i′,k+1, · · · ,K ′i′,L〉i′=1,...,l′

for A′, where A′ is an access structure over l′ attribute
vectors of depth k and A is an access structure over l
attribute vectors of depth k + 1. If A and A′ satisfy the
delegation condition, the algorithm works as follows.

For each u involved in A, find its prefix u′ in A′
such that u = (u′, uk+1). Suppose that u′ is associated
with the i′-th row of the share-generating matrix of A′.
Choose random elements γi, δi ∈ ZN and random group
elements Ri,0, Ri,1, Ri,2, Ri,k+2, · · · , Ri,L ∈ G3 for
each i from 1 to l. Then pick the key component (K ′i′,0,

K ′i′,1,K
′
i′,2,K

′
i′,k+1, · · · ,K ′i′,L) of u′ from SK ′ to com-

pute the key component for u:

Ki,0 =
(
K ′i′,0

)γi
vδix Ri,0,

Ki,1 =
(
K ′i′,1

)γi
gδiRi,1,

Ki,2 =
(
K ′i′,2

)γi (
Ki′,k+1

)γiuk+1 (
hu1

1 · · ·h
uk+1

k+1

)δi
Ri,2,

Ki,k+2 =
(
K ′i′,k+2

)γi
hδik+2Ri,k+2, · · · ,

Ki,L =
(
K ′i′,L

)γi
hδiLRi,L.

This implicitly sets ri = γir
′
i′ + δi, where r′i′ is the

random exponent used in creating the key component for
u′. The value ri is random since δi is picked randomly.
Finally, output

SK = 〈Ki,0,Ki,1,Ki,2,Ki,k+2 · · · ,Ki,L〉i=1,...,l.

Note that this key is identically distributed as the one
directly generated by KeyGen.

– M ←Decrypt(CT, SK,PK): Given a ciphertextCT =(
C,E, 〈Cj,0, Cj,1〉j=1,...,|S|

)
for S of attribute vectors

of depth k and a secret key

SK = 〈Ki,0,Ki,1,Ki,2,Ki,k+1, · · · ,Ki,L〉i=1,...,l

for access structure A over attribute vectors of depth k,
if S ∈ A, compute the constants {ωi ∈ ZN}ρ(i)∈S such
that ∑

ρ(i)∈S

ωiAi = (1, 0, · · · , 0).

Let ρ(i) be the j-th attribute vector in S. Compute:

M ′ =
∏

ρ(i)∈S

(
e (E,Ki,0) · e (Cj,1,Ki,2)

e (Cj,0,Ki,1)

)ωi
.

Output M = C/M ′.

Remark 1 In the key delegation, when delegating a secret
key for A from a secret key for A′, an LSSS (A, ρ) for A
is simultaneously generated: the share-generating matrix A

is formed by setting the i-th row as Ai = A′i′γi, where A′i′
is the i′-th row of the share-generating matrix of A′; the
function ρ maps the i-th row to the attribute vector u. The
value λi = γiλ

′
i′ = γiA

′
i′α = Aiα is the share for u, where

λ′i′ is the share for u′.

Correctness. Observe that
M ′ =

∏
ρ(i)∈S

(
e
(
gs, gλi

)
· e (gs, vrix ) · e (gstj , (hu1

1 · · · h
uk
k )ri)

e (vsx, g
ri) · e ((hu1

1 · · ·h
uk
k )stj , gri)

)ωi

= e (g, g)
sΣρ(i)∈SωiAiα = e(g, g)sα.

It follows that M = C/M ′. The G3 parts are canceled
out because of the orthogonality property.
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Table 1 Computation

Algorithm Computational Complexity

Key Generation (L+ 3) · l · te
Key Delegation (2L− k + 5) · l′ · te

Encryption ((k + 2)|S|+ 2) · te
Decryption 3l∗ · tp

5.2.1 Computational Complexity

We analyze the computational complexity of the main al-
gorithms of the APR-ABE scheme, i.e., key generation, key
delegation, encryption and decryption. The proposed scheme
is built in bilinear groups G and GT , and most computations
take place in the subgroup G1. Therefore we evaluate the
times tp and te consumed by the basic group operations, bi-
linear map and exponentiation in G1, respectively. We do
not take into account the multiplication operation since it
consumes negligible time compared to tp and te.

Table 1 summarizes the time consumed by the main al-
gorithms of the APR-ABE scheme. In this table, L denotes
the maximum depth of the system, l the number of attribute
vectors associated with a secret key, l′ the number of at-
tribute vectors associated with a delegated key, k the depth
of the user delegating a key or the attribute vectors asso-
ciated with a ciphertext, and l∗ is the number of attribute
vectors of a set satisfying an access policy in the decryp-
tion. We can see that the time cost by the key generation
algorithm grows linearly with the product of L and l, but is
independent of the user’s depth. The time consumed by the
delegation is related to the depth of the delegator and de-
creases as the depth grows. Encryption takes time linear in
the product of the cardinality of the set S and the depth of
the attribute vectors in S. The ciphertexts of APR-ABE are
short in that they are only linear in the cardinality of S. This
makes the time consumed by decryption linear in the num-
ber of matching attribute vectors and independent of depth.
This feature is comparable to the up-to-date KP-ABEs [8,
11,9], which nonetheless do not allow the flexible key dele-
gation achieved in our scheme.

5.2.2 Security

The new APR-ABE scheme has full security, which means
that any polynomial-time attacker cannot get useful infor-
mation about the messages encrypted in ciphertexts if he
does not have correct secret keys. Formally, the full secu-
rity is guaranteed by Theorem 1.

Theorem 1 The Access Policy Redefinable Attribute-based
Encryption scheme is fully secure in the standard model if
Assumptions 1, 2 and 3 hold.

Our proof exploits the dual system encryption method-
ology [20]. This approach has been shown to be a power-
ful tool in proving the full security of properly designed
HIBE and ABE schemes (e.g., [12,13,11,20]). Following
this proof framework, we construct semi-functional keys and
ciphertexts for APR-ABE. A semi-functional APR-ABE key
(semi-functional key for short) can be used to decrypt nor-
mal ciphertexts; and a semi-functional APR-ABE ciphertext
(semi-functional ciphertext for short) can be decrypted by
using normal keys. However, a semi-functional key cannot
be used to decrypt a semi-functional ciphertext. As in most
proofs adopting dual system encryption, there is a subtlety
that the simulator can test the nature of the challenge key by
using it to try to decrypt the challenge ciphertext. To avoid
this paradox, we make sure that the decryption on input the
challenge key is always successful by cleverly setting the
random values involved in the challenge key and challenge
ciphertext. We also need to prove that these values are uni-
formly distributed from the view of the adversary who can-
not query the key able to decrypt the ciphertext.

In the following proof, we define a sequence of games
arguing that an attacker cannot distinguish one game from
the next. The first game is Gamereal, which denotes the
real security game as defined in Definition 4. The second
game is Gamereal′ , which is the same as Gamereal ex-
cept that the attacker A does not ask the challenger C to
delegate keys. The third game is Game0, in which all keys
are normal, but the challenge ciphertext is semi-functional.
Let q denote the number of key queries made by A. For
all ν = 1, · · · , q, we define Gameν , in which the first ν
keys are semi-functional and the remaining keys are normal,
while the challenge ciphertext is semi-functional. Note that
when ν = q, in Gameq , all keys are semi-functional. The
last game is defined as Gamefinal where all keys are semi-
functional and the ciphertext is a semi-functional encryption
of a random message. We will prove that these games are in-
distinguishable under Assumptions 1, 2 and 3.

The semi-functional ciphertexts and keys are constructed
as follows.

Semi-functional ciphertext. Let g2 denote the generator of
G2. We first invoke Encrypt to form a normal ciphertext
(C̄, Ē, 〈C̄i∗,0, C̄i∗,1〉i∗=1,...,|S∗|). We choose a random ele-
ment c ∈ ZN and for all i∗ = 1, · · · , |S∗|, select random
exponents ϕi∗ , υi∗ ∈ ZN . Set the semi-functional ciphertext
to be

C = C̄, E = Ēgc2, Ci∗,0 = C̄i∗,0g
ϕi∗
2 , Ci∗,1 = C̄i∗,1g

υi∗
2 .

Semi-functional key. We first call algorithm KeyGen to
form normal key 〈K̄i,0, K̄i,1, K̄i,2, K̄i,k+1, · · · , K̄i,L〉i=1,...,l.

Then we choose random elements fi ∈ ZN for the i-th row
of the share-generating matrix A. We choose random ele-
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ments ζ1, ζ2, ..., ζD, η1, η2, ..., ηL ∈ ZN and a random vec-
tor ϑ ∈ ZnN . The semi-functional key is set as:

Ki,0 = K̄i,0g
Aiϑ+fiζx
2 , Ki,1 = K̄i,1g

fi
2 ,

Ki,2 = K̄i,2g
fiΣ

k
j=1ujηj

2 ,

Ki,k+1 = K̄(i,k+1)g
fiηk+1

2 , · · · ,Ki,L = K̄(i,L)g
fiηL
2 .

Remark 2 When we use a semi-functional key to decrypt a
semi-functional ciphertext, we will have an extra term∏
ρ(i)∈S

(
e(g2, g2)cAiϑe(g2, g2)fi(cζx+υi∗Σ

k
j=1ujηj−ϕi∗)

)ωi
.

If ϑ · (1, 0, · · · , 0) = 0 mod p2 and cζx + υi∗Σ
k
j=1ujηj −

ϕi∗ = 0 mod p2, then the extra term happens to be one,
which means that the decryption still works. We say that the
keys satisfying this condition are nominally semi-functional
keys. We will show that a nominally semi-functional key is
identically distributed as a regular semi-functional key in the
attacker’s view.

Lemma 1 For any attacker A,

GamerealAdvA = Gamereal′AdvA.

Proof From the construction of our APR-ABE, the keys from
the key generation algorithm are identically distributed as
the keys from the delegation algorithm. Therefore, in A’s
view, there is no difference between these two kinds of games.

ut

Lemma 2 IfA can distinguishGamereal′ fromGame0 with
advantage ε, then we can establish an algorithm B to break
Assumption 1 with advantage ε.

Proof We construct an algorithm B to simulate Gamereal′
or Game0 to interact with A by using the tuple (g, X3, T )

of Assumption 1.

Setup: Algorithm B selects a random α ∈ ZN . For all i =

1, · · · , D and j = 1, · · · , L, it chooses random elements
ζ̄i, η̄j ∈ ZN and computes vi = gζ̄i , hj = gη̄j . It provides
A with public key:

PK = (U, N, g, v1, · · · , vD, h1, · · · , hL, e(g, g)α) .

Key generation Phase 1, Phase 2: Note that B knows the
master key MSK = α. Therefore, B can run KeyGen to
generate normal keys in Phase 1 and Phase 2.

Challenge:A gives two equal-length messagesM0 andM1,
and a set S∗ = {u} of attribute vectors to B. B then uses the
T in the given tuple to form a semi-functional or normal
ciphertext as follows.

B flips a random coin b ∈ {0, 1}. For all i∗ = 1, · · · , |S∗|,
it chooses random elements ti∗ ∈ ZN . Finally, it sets the
semi-functional ciphertext CT to be:

C = Mbe(g, T )α, E = T,

Ci∗,0 = T ζ̄xT (η̄1u1+···+η̄kuk)ti∗ , Ci∗,1 = T ti∗ .

If assuming T = gsgc2, this implicitly sets

ϕi∗ = c(ζ̄x + ti∗
k∑
j=1

uj η̄j), υi∗ = cti∗ ,

but there is neither unwanted correlation between values (ϕi∗

mod p2) and values (ζ̄x, η̄j mod p2), nor correlation be-
tween (ti∗ mod p2) and (υi∗ mod p2) by the Chinese Re-
mainder Theorem. Thus, the G1 part of the ciphertext is un-
related to the G2 part.

Guess: If T ∈ G12, CT is a properly distributed semi-
functional ciphertext. Hence we are in Game0. If T ∈ G1,
by implicitly setting T = gs, CT is a properly distributed
normal ciphertext. Hence we are inGamereal′ . IfA outputs
b′ such that b′ = b, then B outputs 0. Therefore, with the tu-
ple (g,X3, T ), we have that the advantage of B in breaking
Assumption 1 is

|Pr[B(g,X3, T ∈ G12) = 0]− Pr[B(g,X3, T ∈ G1) = 0]|

= |Game0AdvA −Gamereal′AdvA| = ε,

where Game0AdvA is the advantage of A in Game0 and
Gamereal′AdvA is the advantage of A in Gamereal′ . ut

Lemma 3 IfA can distinguishGameν−1 fromGameν with
advantage ε, then we can construct an algorithm B to break
Assumption 2 with advantage ε.

Proof We construct an algorithm B to simulate Gameν−1

orGameν to interact withA by using the tuple (g,X1X2, X3,

Y2Y3, T ) of Assumption 2.

Setup: The public key PK generated by B is the same as
that in Lemma 2. Algorithm B gives PK to A.

Challenge: For convenience, we bring the Challenge phase
before Phase1. This will not affect the security proof. When
A queries the challenge ciphertext with two equal-size mes-
sages M0,M1 and a set S∗ of attribute vectors, B flips a
random coin b ∈ {0, 1} and randomly chooses ti∗ ∈ ZN for
all i∗ = 1, · · · , |S∗|. It sets the ciphertext to be

C = Mbe(g,X1X2)α, E = X1X2,

Ci∗,0 = (X1X2)ζ̄x(X1X2)(η̄1u1+···+η̄kuk)ti∗ ,

Ci∗,1 = (X1X2)ti∗ .
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By assuming X1X2 = gsgc2, this implicitly sets

ϕi∗ = c(ζ̄x + ti∗
k∑
j=1

uj η̄j), υi∗ = cti∗ .

Again there is no correlation between values (ϕi∗ mod p2)

and values (ζ̄x, η̄j mod p2), nor is there any correlation be-
tween (ti∗ mod p2) and (υi∗ mod p2) by the Chinese Re-
mainder Theorem. Thus the G1 part is unrelated to the G2

part of this ciphertext. Therefore, this ciphertext is a well
distributed semi-functional ciphertext.

Key generation Phase 1, Phase 2: For the first ν − 1 key
queries, B simulates the semi-functional keys. For a queried
A, it first calls the key generation algorithm to generate an
LSSS (A, ρ) and a normal key 〈K̄i,0, K̄(i,1), K̄i,2, K̄i,k+1,

· · · , K̄i,L〉∀i∈[l] for this LSSS. Then, for each i from 1 to l,
B picks a random element f̄i ∈ ZN . B also chooses random
elements ζ1, ..., ζD, η1, ..., ηL ∈ ZN . Finally B chooses a
random vector ϑ̄ ∈ ZnN and computes the secret key:

Ki,0 = K̄i,0(Y2Y3)Aiϑ̄+f̄iζx , Ki,1 = K̄i,1(Y2Y3)f̄i ,

Ki,2 = K̄i,2(Y2Y3)f̄i
∑k
j=1 ujηj ,

Ki,k+1 = K̄i,k+1(Y2Y3)f̄iηk+1 , · · · ,

Ki,L = K̄i,L(Y2Y3)f̄iηL .

If we assume Y2 = ga2 for some a, this implicitly sets ϑ =

aϑ̄, fi = af̄i. Thus this key is identically distributed as the
semi-functional key.

For the rest of key queries but the ν-th one, B simulates
normal keys. Because B knows the master key MSK =

α, it can easily create the normal keys by running the key
generation algorithm.

To respond to the ν-th key query on an access structure
A, algorithm B will either simulate a normal key or a semi-
functional key depending on T . Algorithm B generates an
LSSS for A to prepare for key generation. It creates a vec-
tor ᾱ with the first coordinate equal to α and the remaining
n − 1 coordinates picked randomly in ZN . B also creates
a vector ϑ̄ with the first coordinate equal to 0 and the re-
maining n−1 coordinates picked randomly in ZN . For each
row Ai of A, B chooses random elements r̄i ∈ ZN and
Ri,0, Ri,1, Ri,2, Ri,k+1, · · · , Ri,L ∈ G3. Then B computes:

Ki,0 = gAiᾱTAiϑ̄T r̄iζ̄xRi,0, Ki,1 = T r̄iRi,1,

Ki,2 = T (η̄1u1+···+η̄kuk)r̄iRi,2,

Ki,k+1 = T r̄iη̄k+1Ri,k+1, · · · , Ki,L = T r̄iη̄LRi,L.

If T ∈ G13, by assuming T = gc1gc33 , this implicitly sets
ri = c1r̄i and α = ᾱ + c1ϑ̄. Thus this key is identically
distributed as the normal key. If T ∈ G, by assuming T =

gc1gc22 g
c3
3 , this implicitly sets:

ri = c1r̄i, fi = c2r̄i,ϑ = c2ϑ̄,α = ᾱ+ c1ϑ̄,

and ζ1 = ζ̄1, ..., ζD = ζ̄D, η1 = η̄1, ..., ηL = η̄L. Since ri
are created by r̄i in G1 and fi are created by r̄i in G2, there
is no unwanted correlation between the G1 part and the G2

part by the Chinese Remainder Theorem. Similarly, the fact
ζ1 = ζ̄1, ..., ζD = ζ̄D, η1 = η̄1, ..., ηL = η̄L will not result
in unwanted correlation between the G1 and the G2 of this
key.

When the simulator B uses the ν-th key to decrypt the
semi-functional ciphertext to test whether the key is normal
or semi-functional, it will obtain∏
ρ(i)∈S∗

(
e(g2, g2)cAiϑe(g2, g2)fi(cζx+υi∗Σ

k
j=1ujηj−ϕi∗)

)ωi
= 1. This is because from the simulation of semi-functional
ciphertext we have that

ϕi∗ = c(ζ̄x + ti∗
k∑
j=1

uj η̄j), υi∗ = cti∗

and from the simulation of the ν-th key, we have that

ζ1 = ζ̄1, ..., ζD = ζ̄D, η1 = η̄1, ..., ηL = η̄L.

Moreover, since the inner product

ϑ · (1, 0, · · · , 0) = cϑ̄ · (1, 0, · · · , 0) = 0,∑
ρ(i)∈S∗ ωiAiϑ = 0. Thus, when B uses the ν-th key to de-

crypt the semi-functional ciphertext, the decryption will still
work and the ν-th key is nominally semi-functional. Now,
we argue that the nominally semi-functional key is identi-
cally distributed as a semi-functional key in A’s view. That
is, if A is prevented from asking the ν-th key that can de-
crypt the challenge ciphertext, the fact that ϑ1 = 0 (ϑ1

is set as the first coordinate of ϑ) should be information-
theoretically hidden in A’s view.

Because the ν-th key cannot decrypt the challenge ci-
phertext, the vector (1, 0, · · · , 0) is linearly independent of
RS∗ , which is a submatrix of A and contains only those
rows that satisfy ρ(i) ∈ S∗. From the basics of linear al-
gebra and similarly to Proposition 11 in [11], we have the
following proposition:

Proposition 1 A vector v is linearly independent of a set of
vectors represented by a matrix M if and only if there exists
a vector w such that Mw = 0 while v ·w = 1.

Since (1, 0, · · · , 0) is linearly independent of RS∗ , a
vector w must exist such that for each row Ai ∈ RS∗ , it
holds that Ai · w = 0,w · (1, 0, · · · , 0) = 1. Then for the
fixed vector w, we can write

Ai · ϑ = Ai · (zw + r),

where r is uniformly distributed and reveals no information
about z. We note that ϑ · (1, 0, ..., 0) can not be determined
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from r alone, some information about z is also needed. If
ρ(i) ∈ S∗, then Ai · ϑ = Ai · r. Thus, no information
about z is revealed and Ai · ϑ is hidden. If ρ(i) 6∈ S∗, then
Ai · ϑ + fiζx = Ai · (zw + r) + fiζx. This equation in-
troduces a random element fiζx, where fi is random and
appears only once because ρ is injective. Hence if not all of
the fi values are congruent to 0 modulo p2, no information
about z is revealed. The probability that all fi’s are 0 modulo
p2 is negligible. Therefore, the value being shared in G2 is
information-theoretically hidden in A’s view with probabil-
ity close to 1. Hence, B simulates the semi-functional keys
with a probability close to 1.

Guess: If T ∈ G13, we are in Gameν−1. If T ∈ G, we are
in Gameν . If A outputs b′ = b, B outputs 0. Then, with the
input tuple (g,X1X2, X3, Y2Y3, T ), the advantage of B in
breaking Assumption 2 is:

|Pr[B(g,X1X2, X3, Y2Y3, T ∈ G13) = 0]−

Pr[B(g,X1X2, X3, Y2Y3, T ∈ G) = 0]|

= |Gameν−1AdvA −GameνAdvA| = ε,

where Gameν−1AdvA is the advantage of A in Gameν−1

and GameνAdvA is the advantage of A in Gameν . ut

Lemma 4 If A can distinguish Gameq from Gamefinal
with advantage ε, then we can construct an algorithm B that
contradicts Assumption 3 with advantage ε.

Proof We construct B to simulate Gameq or Gamefinal to
interact withA by using the tuple (g, gαX2, X3, g

sY2, Z2, T )

of Assumption 3.

Setup: For all i = 1, · · · , D and all j = 1, · · · , L, B
chooses random exponents ζ̄i, η̄j ∈ ZN and computes vi =

gζ̄i , hj = gη̄j . Then it sets

PK = (U, N, g, v1, · · · , vD, h1, · · · , hL, e(g, gαX2))

and gives PK toA. We note that B does not know the secret
α.

Key generation Phase 1, Phase 2: To simulate the semi-
functional keys for A, B first generates an LSSS (A, ρ) for
A. It then selects two vectors: φ, which has the first coordi-
nate set to 1 and the remaining n− 1 coordinates randomly
chosen in ZN , and ψ, which has the first coordinate set to
0 and the remaining n − 1 coordinates randomly chosen in
ZN . We note that this implicitly sets α = αφ+ψ.

For the i-th row Ai of A, algorithm B chooses random
elements ri, f̄i ∈ ZN ;Ri,0, Ri,1, Ri,2, Ri,k+1, · · · , Ri,L ∈

G3. B randomly chooses ζ1, ..., ζD, η1, ..., ηL ∈ ZN and
computes the key as follows:

Ki,0 = gAiψ (gαX2)
Aiφ vrix Z

f̄iζx
2 Ri,0,

Ki,1 = griZ f̄i2 Ri,1,

Ki,2 = (hu1
1 · · ·h

uk
k )

ri Z
f̄i

∑k
j=1 ujηj

2 Ri,2,

Ki,k+1 = hrik+1Z
f̄iηk+1

2 Ri,k+1,

...

Ki,L = hriLZ
f̄iηL
2 Ri,L.

By assuming X2 = gc22 , Z2 = gd22 , this implicitly sets ϑ =

c2φ, fi = d2f̄i. We also note that the values being shared
in G2 are properly randomized by fi. Therefore, this key
is identically distributed as the semi-functional key in A’s
view.

Challenge: When B is given two equal-length messagesM0

and M1 and a set S∗ of attribute vectors, B flips a ran-
dom coin b ∈ {0, 1} and chooses ti∗ ∈ ZN for all i∗ =

1, · · · , |S∗|. Then it sets the ciphertext to be:

C = MbT, E = gsY2,

Ci∗,0 = (gsY2)ζ̄x(gsY2)ti∗ (η̄1u1+···+η̄kuk),

Ci∗,1 = (gsY2)ti∗ .

Assuming Y2 = gc2, this implicitly sets

ϕi∗ = c(ζ̄x + ti∗
k∑
j=1

uj η̄j)

and υi∗ = cti∗ , but again there is neither correlation be-
tween (ϕi∗ mod p2) and (ζ̄x, η̄j mod p2), nor correlation
between (ti∗ mod p2) and (υi∗ mod p2) by the Chinese
Remainder Theorem.

If T = e(g, g)α, then this ciphertext is the semi-functional
ciphertext of message Mb. If T is a random element in GT ,
this ciphertext is a semi-functional encryption of a random
message.

Guess: If T = e(g, g)α, we are in Gameq . If T is a random
element in GT , we are in Gamefinal. B outputs 0 when A
outputs b′ = b. Given the tuple (g, gαX2, X3, g

sY2, Z2, T ),
the advantage of B in breaking Assumption 3 is:

|Pr[B(g, gαX2, X3, g
sY2, Z2, T = e(g, g)α) = 0]−

Pr[B(g, gαX2, X3, g
sY2, Z2, T

R←− GT ) = 0]|

= |GameqAdvA −GamefinalAdvA| = ε,

where GameqAdvA is the advantage of A in Gameq and
GamefinalAdvA is the advantage of A in Gamefinal. ut
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From all the lemmas proven above, the proof of Theorem 1
follows:

Proof InGamefinal, the ciphertext completely hides the bit
b, so the advantage of A in this game is negligible. Through
Lemmas 1, 2, 3 and 4, we have shown that the real secu-
rity game Gamereal is indistinguishable from Gamefinal.
Therefore, the advantage of A in Gamereal is negligible.
Hence, there is no polynomial-time adversary with a non-
negligible advantage in breaking our APR-ABE system. This
completes the proof of Theorem 1. ut

6 Conclusion

We revisited KP-ABE and proposed a dynamic ABE re-
ferred to as APR-ABE. APR-ABE distinguishes itself from
other KP-ABE schemes by providing a delegation mecha-
nism that allows a user to redefine the access policy and del-
egate a secret key without making the redefined access pol-
icy more restrictive. This feature renders APR-ABE espe-
cially suitable to e-healthcare record systems where a priori
specification of access policies for secret keys is too rigid or
simply not practical. We constructed an APR-ABE scheme
with short ciphertexts and proved its full security in the stan-
dard model under several non-interactive assumptions.
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