
Preserving User’s Privacy in Web Search

Engines

Jordi Castellà-Roca a, Alexandre Viejo b,a,

Jordi Herrera-Joancomart́ı c,d

aRovira i Virgili University, Dept. of Computer Engineering and Maths, UNESCO
Chair in Data Privacy, Av. Päısos Catalans 26, E-43007 Tarragona, Spain

E-mail: {jordi.castella, alexandre.viejo}@urv.cat
bInstitute of Information Systems, Humboldt-Universität zu Berlin, Spandauer Str.

1, D-10178 Berlin, Germany
E-mail: alexandre.viejo@wiwi.hu-berlin.de

cDepartament d’Enginyeria de la Informació i les Comunicacions, Universitat
Autònoma de Barcelona, Edifici Q, Campus de Bellaterra, 08193 Bellaterra,

Spain.
E-mail: jherrera@deic.uab.cat

dInternet Interdisciplinari Institute (IN3), Universitat Oberta de Catalunya, Spain.
E-mail: jherreraj@uoc.edu

Abstract

Web search engines (e.g. Google, Yahoo, Microsoft Live Search...) are widely used
to find certain data among a huge amount of information in a minimal amount
of time. However, these useful tools also pose a privacy threat to the users: web
search engines profile their users by storing and analyzing past searches submitted
by them. To address this privacy threat, current solutions propose new mechanisms
that introduce a high cost in terms of computation and communication. In this
paper we present a novel protocol specially designed to protect the users’ privacy
in front of web search profiling. Our system provides a distorted user profile to
the web search engine. We offer implementation details and computational and
communication results that show that the proposed protocol improves the existing
solutions in terms of query delay. Our scheme provides an affordable overhead while
offering privacy benefits to the users.

Key words: Cryptography, Privacy, Private information retrieval, Web search

Preprint submitted to Elsevier Preprint 16 May 2009

1 Introduction

Communication networks enable us to reach a very large volume of information
in a minimal amount of time. Furthermore, that huge quantity of data can
be accessed at any time and any place with a capable device (e.g. a laptop, a
PDA...) and an Internet connection. Nowadays, it is pretty common to access
easily to both resources. In the future, it will be even easier.

However, useful information about a specific topic is hidden among all the
available data and it can be really challenging to find it since that information
can be scattered around the Word Wide Web.

Web search engines (e.g. Google, Yahoo, Microsoft Live Search...) are widely
used to do this hard job for us. The 84% of the Internet users have used a web
search engine at least once. For the 32%, web search engines are an essential
tool to address their everyday duties [1]. Among the different search engines,
Google is the most used in the U.S. with a 43.7% of the total amount of
searches performed in 2006 [2]. Google improves its performance (it gives per-
sonalized search results) by storing a record of visited sites and past searches
submitted by each user [3] (Web History).

Those searches can reveal a lot of information from individual users or the
institutions they work for. For example, let us imagine an employee of a certain
company A. This employee uses Google to obtain information about a certain
technology. If a company B, which is a direct competitor of A, knows this
situation, it can infer that this technology will be used in the new products
offered by A. This knowledge gives to B an important advantage over A.
Another example of this situation occurs when a person is applying for a
certain job. In this case, if the employer knows that the applicant has been
looking for information regarding a certain disease, she can use this knowledge
to choose another person for the job. In both examples, the attacker (the entity
who gets some advantage over the other) benefits from the lack of a privacy-
preserving mechanism between the user and the web search engine.

1.1 Previous work

The problem of submitting a query to a web search engine while preserving the
users’ privacy can be seen as a Private Information Retrieval (PIR) problem.
In a PIR protocol, a user can retrieve a certain value from a database while the
server, which holds the database, gets no knowledge about the data requested
by the user. In our case, the server is represented by the web search engine
and the database is represented by the web pages that the web search engine
stores.

2

The first PIR protocol was designed by Chor, Goldreich, Kushilevitz and Su-
dan [4,5]. Their scheme is based on several servers holding the same database.
These servers cannot communicate between them. The main shortcoming of
this proposal is that it is unable to work with only one server (single-database
PIR), which is the web search engine in our scenario. Also, it is not realistic
to assume that servers are unable to communicate between them.

Single-database PIR protocols can be found in the literature. The first one
was presented in [6] (see [7] for a detailed survey on single-database PIR
developments). These schemes are more suitable for working with web search
engines. However, they suffer from some fundamental problems that make their
use unfeasible in communications between a user and a web search engine. The
main shortcomings are the following:

(1) Single-database PIR schemes are not suited for large databases. In PIR
literature, the database is usually modeled as a vector. The user wishes
to retrieve the value of the i-th component of the vector while keeping the
index i hidden from the server which holds the database. Let us assume
that this database contains n items. A PIR protocol will try to guarantee
maximum server uncertainty on the index i of the record retrieved by the
user. This is done by accessing to all records in the database. Note that
if a certain user only accesses to a part, it will be easier for the server
to know the real interests of this user. The cost of accessing all records
represents a computational complexity of O(n).

(2) When accessing the records in the database, it is assumed that the user
knows their physical location. This situation is not realistic because the
database is not managed by the user. In [8], the authors propose the use
of a mechanism which maps individual keywords to physical addresses.
According to that, the user can submit a query consisting on a keyword
and no modification in the structure of the database is needed. However,
this is not feasible in a real scenario since web search engines do not use
this model.

(3) Finally, it is assumed that the server which holds the database collabo-
rates with the user in the PIR protocol. Nevertheless, this assumption is
not realistic because the server has no motivation to protect the privacy
of the users. In fact, the use of a PIR protocol is a disadvantage for the
server since this limits its profiling ability. According to that, the user
should take care of her own privacy by herself. She should not expect any
collaboration from the web search engine.

Another approach to provide privacy in web searches is the use of a general
purpose anonymous web browsing mechanism. Simple mechanisms to achieve
a certain level of anonymity in web browsing include: (i) the use of proxies;
or (ii) the use of dynamic IP addresses (for instance, using DHCP). Proxies
do not solve the privacy problem. This solution only moves the privacy threat

3

from the web search engine to the proxies themselves. A proxy will prevent
the web search engine from profiling the users, but the proxy will be able to
profile them instead. Regarding the use of dynamic IP addresses, this option
has the following drawbacks:

• The renewal policy of the dynamic IP address is not controlled by the user
but the network operator. This operator can always give the same IP address
to the same Media Access Control (MAC) address.

• Certain users require static IP addresses.

More reliable systems are those based on the cryptographic approach of onion
routing. The Tor anonymity network [9] is an example of that. However, Tor
cannot be installed and configured straightforwardly. This is a problem be-
cause a wrong configuration may allow some reported attacks. In addition to
that, one of the most important drawbacks of this scheme is the fact that the
HTTP requests over the Tor network are fairly slow [10]. Thus, they introduce
important delays in the web search process.

In addition to PIR protocols and anonymous web browsing, some proposals
for the specific problem of private web search have been made in the last years.
The main ones are next reviewed.

Authors in [11] distinguish and define four levels of privacy protection in per-
sonalized web search. In the first level (pseudo identity), user identity is re-
placed with a pseudo identity that contains less personal information. This
level is not enough to protect the user’s privacy because the information from
a certain user can be aggregated to facilitate her posterior identification. The
AOL [12] scandal is an example of this. The second level provides a single iden-
tity for a group of users (group identity). The search engine can only build a
group profile for the group of users instead of a single profile for each user.
In the third level, the user identity is not available to the search engine (no
identity). For example, users send queries through an anonymous network. Fi-
nally, in the fourth level, neither the user identity nor the query are available
to the search engine. Although [11] does not propose any implementable solu-
tion (it only offers theoretical models), authors point out that this fourth level
of privacy protection may have the highest cost due to large communication
and cryptographic costs.

A more practical approach can be found in [10]. In this work, authors propose
a tool named Private Web Search (PWS). This tool falls in the third level
of privacy protection according to the classification in [11]. PWS is a Firefox
plugin with HTTP proxy capabilities that is used to protect the users’ privacy.
This plugin is a client for the Tor anonymity network. Search queries are
routed through the HTTP proxy and the Tor network. In this scheme, the
cost of submitting a query to Google is about 10 second on average, i.e. 33

4

times slower than a direct connection (0.3 seconds). Furthermore, it is worth
to mention that this delay is obtained using paths of length 2, instead of the
default length of 3.

In [13], authors present a system to automatically build a hierarchical user
profile using browsing history and past emails. This profile represents the
user’s implicit personal interests. In this profile, general terms with higher
frequency are at higher levels and specific terms with lower frequency are at
lower levels. The user specifies a threshold, which represents the minimum
number of documents where a frequent term is required to occur. Next, a new
partial profile is build using the threshold and the complete profile, this partial
profile has the highest levels. The authors developed a search engine wrapper
on the server side that incorporates the partial user profile with the results
retrieved from the web search engine. This scheme was tested using the MSN
search engine. Nonetheless, this solution does not prevent the search engine
from building user’s profiles because users submit their queries directly to the
search engine.

1.2 Contribution and plan of this paper

We propose a novel protocol, the Useless User Profile (UUP) protocol, specially
designed to protect the users’ privacy in front of web search profiling. Our
system provides a distorted user profile to the web search engine. The proposed
protocol submits standard queries to the web search engine. Thus, it does not
require any change in the server side. In addition to that, this scheme does
not need the server to collaborate with the user. The computational cost and
communication overhead obtained in our tests prove that this new protocol
improves the performance of existing proposals.

The paper is organized as follows. In Section 2 some cryptographic background
is provided. Section 3 describes the Useless User Profile (UUP) protocol and
offers a security analysis. Implementation details and performance results are
given in Section 4. Finally, Section 5 concludes the paper and gives some ideas
for further research.

2 Cryptographic building blocs

In this section, we outline the cryptographic tools our protocol is based on.

5

2.1 n-out-of-n threshold ElGamal encryption

In cryptographic multi-party protocols, some operations must be computed
jointly by different users. In an n-out-of-n threshold ElGamal encryption [14],
n users share a public key y and the corresponding unknown private key α
is divided into n shares αi. Using this protocol, a certain message m can be
encrypted using the public key y and the decryption can be performed only if
all n users collaborate in the decryption process. Key generation, encryption
and decryption process are next described.

2.1.1 Key generation

First, a large random prime p is generated, where p = 2q + 1 and q is a prime
number too. Also, a generator g of the multiplicative group Z

∗
q is chosen.

Then, each user generates a random private key αi ∈ Z
∗
q and publishes yi = gαi.

The common public key is computed as y =
∏n

i=1 yi = gα, where α = α1 +
. . . + αn.

2.1.2 Message encryption

Message encryption can be performed using the standard ElGamal encryption
function [15]. Given a message m and a public key y, a random value r is
generated and the ciphertext is computed as follows:

Ey(m, r) = c = (c1, c2) = (gr, m · yr)

2.1.3 Message decryption

Given a message encrypted with a public key y, Ey(m, r) = (c1, c2), user Ui

can decrypt that value as follows:

Each user j �= i publishes c1αj . Then, Ui can recover message m in the following
way:

m =
c2

c1αi(
∏

j �=i c1
αj)

This decryption can be verified by each participant by performing a proof of
equality of discrete logarithms [16].

6

2.2 ElGamal re-masking

The re-masking operation performs some computations over an encrypted
value. In this way, its cleartext does not change but the re-masked message is
not linkable to the same message before re-masking.

Given an ElGamal ciphertext Ey(m, r), it can be re-masked by computing
[17]:

Ey(m, r) · Ey(1, r
′)

For r′ ∈ Z
∗
q randomly chosen and where · stands for the component-wise scalar

product (ElGamal ciphertext can be viewed as a vector with two components).
The resulting ciphertext corresponds to the same cleartext m.

3 Useless user profile protocol for web search queries

In this section we present our Useless User Profile (UUP) protocol that allows
users to submit queries to a web search engine without disclosing any useful
personal information. In this way, this scheme prevents web search engines
from obtaining valid profiles from the users.

First of all, we describe the entities involved in our scheme. Next, we give a
general view of the proposed protocol and we enumerate the privacy properties
of the proposed scheme. In the last subsection, a detailed description of the
UUP protocol is given.

3.1 Entities

Our scenario contains the following entities:

• Users (U). They are the individuals who submit queries to the web search
engine. Their motivation is to protect their own privacy.

• The central node (C). It groups users in order to execute the UUP protocol
that is next introduced. The main objective of this entity is to get in touch
all the users that want to submit a query.

• The web search engine (W). It is the server that holds the database. It
can be Google, Yahoo or Microsoft Live Search among others. It has no
motivation to preserve users privacy.

7

3.2 Protocol overview

The main idea of our scheme is that each user who wants to submit a query
will not send her own query but a query of another user instead. At the same
time, her query is submitted by another user. Regarding privacy concerns, the
relevant point is that users do not know which query belongs to each user.
This is achieved using cryptographic tools. As a result of this process, each
user submits very different kinds of queries. Those queries are not liable to
a certain person since each user submit queries which are not generated by
herself. Using this approach, the web search engine cannot generate a real
profile of a certain individual.

The proposed scheme, at a high level, works as follows: the central node groups
n users who want to submit a query. Those n users execute an anonymous
query retrieval protocol where each user Ui, for i ∈ {1, . . . , n}, gets a query
from one of the other n− 1 users. Ui does not know the source of the received
query. To achieve this goal, all queries are first shuffled and then distributed.
This process is performed using encryption, re-masking and permutation by
means of a multi-party protocol executed by all the users to ensure its fairness.
Then, each user submits the received query to the web search engine. The
answer from the search engine is broadcast to all the group members. Each
user takes only her answer. The remaining answers are discarded.

In order to ensure the correctness of this process, our protocol assumes that
the users follow the protocol and that there are no collusion between two
entities of the system. These assumptions are reasonable since the protocol’s
main objective is to avoid the web search profiling done by the web search
engine.

Regarding the privacy requirements of the users, our scheme fulfills the fol-
lowing properties:

• Users must not link a certain query with the user who has generated it.
• The central node must not link a certain query with the user who has

generated it.
• The web search engine must be unable to construct a reliable profile of a

certain user.

3.3 Protocol description

The UUP protocol is composed of four subprotocols:

• Group set up.

8

• Group key generation.
• Anonymous query retrieval.
• Query submission and retrieval.

3.3.1 Group set up

When a user Ui wants to submit a query to the web search engine, she sends
a message to the central node C requesting to be included in a group.

The central node C receives all user requests. Once it has n requests, it creates
a new user group {U1, . . . , Un} and notifies the n users that they belong to
the same group. After this first step, users in this group can establish a com-
munication channel between them. In this way, each user can send messages
to the rest of the group directly. The central node is no longer needed.

3.3.2 Group key generation

The UUP protocol uses a group key which is generated using a fair threshold
encryption scheme. All users follow these steps:

(1) Users {U1, . . . , Un} agree on a large prime p where p = 2q + 1 and q is
prime too. Next, they pick an element g ∈ Z

∗
p of order q.

(2) Users {U1, . . . , Un} generate an ElGamal single public key y using the n-
out-of-n threshold ElGamal encryption described in Section 2.1.1. Each
user Ui keeps her private key αi secret.

3.3.3 Anonymous query retrieval

Each group user {U1, . . . , Un} submits her personal query mi secretly and
obtains one query mi from another group member anonymously by executing
the following protocol:

(1) For i = 1, . . . , n, each user Ui does the following steps:
(a) Ui generates a random value ri and encrypts her query mi using the

group key y. The result of this operation is:

Ey(mi, ri) = (c1i, c2i) = c0
i

(b) Ui sends c0
i to the other group members Uj, for ∀j �= i.

(2) Assuming a predefined order for the users in the group (from 1 to n), we
denote as {c0

1, . . . , c
0
n} the ordered cryptograms that each user Ui owns

at the end of the sending process. Then, for i = 1, . . . , n, each user Ui

performs the following operations:

9

(a) Ui re-masks the cryptograms {ci−1
1 , . . . , ci−1

n } received from Ui−1 and
she obtains a re-encrypted version {ei−1

1 , . . . , ei−1
n } using the re-masking

algorithm defined in section 2.2. Note that U1 re-masks the cryp-
tograms {c0

1, . . . , c
0
n} that she already owns. The resulting ciphertexts

correspond to the same initial cleartexts.
(b) Ui permutes the order of the cryptograms at random and obtains a

reordered version {ci
1, . . . , c

i
n} = {ei−1

σ(1), . . . , e
i−1
σ(n)}.

(c) Ui sends {ci
1, . . . , c

i
n} to Ui+1. User Un broadcasts {cn

1 , . . . , c
n
n} to all

the group members.
(3) Let us denote {c1, . . . , cn} = {cn

1 , . . . , c
n
n}. At this step, each user Ui has

those n values. Then, user Ui decrypts the value ci that corresponds to a
query mi generated by one of the group members. Note that due to the
re-masking and permutation steps, probably mi does not correspond to
mi (the query that has been generated by Ui).

Decryption of a certain ci requires that all n users participate by send-
ing their corresponding shares to user Ui. According to that, Ui receives
(c1i)

αj from Uj, for j = (1, . . . , n) and j �= i. Then, Ui computes her own
share (c1i)

αi . Finally, Ui retrieves mi by computing:

mi =
c2i

c1αi
i (

∏
j �=i c1

αj

i)

3.3.4 Query submission and retrieval

(1) Each group member Ui submits the retrieved mi to the web search engine.
(2) Upon receiving the corresponding answer ai from the web search engine,

each user broadcasts it to the rest of the group members.
(3) Each user takes the answer ai that corresponds to her original query from

all the received answers.

3.4 Security analysis

Our proposal has been designed to preserve the privacy of the users when they
submit queries to a web search engine. According to that, a successful attacker
would be able to link a certain query to the user who has generated it.

We consider that the computational power of an attacker does not allow him
to break current computationally secure cryptosystems. Also, as explained in
Section 3.2, our protocol assumes that the users follow the proposed protocol
correctly and that there are no collusions between entities.

The attacker can be any entity (one of the three entities of the protocol or
an external one). However, external attackers can get, at most, the same in-

10

formation that an internal entity. For that reason, we perform our analysis
assuming that the attacker is an internal entity.

3.4.1 Dishonest user

A dishonest user Ua who is part of a group follows all the steps of the pre-
sented protocol. At the end of the process, Ua owns the original ciphertexts
{c0

1, . . . , c
0
n} (before the re-masking/permuting step) which contain the queries

from all the users of the group. If Ua would be able to decrypt these cipher-
texts, she would know which query has sent each user. Nevertheless, as long
as the secret keys (α1, . . . , αn) are not compromised, she is unable to do it. In
this way, the proposed system preserves the privacy of the users.

3.4.2 Dishonest central node

The central node C only participates in the first step of the protocol (Section
3.3.1). Its purpose is to receive requests from users who want to form a group.
Upon C receives n requests from n different users, the corresponding group
is formed and C is no longer needed. According to that, C cannot get any
posterior transmission between the users, hence it cannot link any query to
any user.

3.4.3 Dishonest web search engine

The web search engine W participates in the last step of the protocol (Section
3.3.4). This entity receives all the queries from the users who form the group
and answers them. In this way, W can link a certain query mi with the user
Ui who has submitted it. However, W alone cannot determine whether mi

belongs to Ui or whether it has been generated by another user. Therefore, W
has a useless profile of Ui.

4 Implementation details and experimental results

The protocol described in Section 3 prevents a search engine from obtaining
a reliable profile of a certain user, i.e. it brings a higher degree of privacy
to the users. From the strictly technical point of view, the cost of achieving
this privacy degree can be measured in terms of query delay. The proposed
protocol requires some cryptographic operations and network communications
that increase this delay.

We have implemented our protocol and we next present some results regarding

11

its performance in a practical scenario. These results prove that our proposal
introduces a delay which can be assumed by the user.

4.1 Implementation and configuration details

The proposed system requires two components: the central node and the client
application (see Section 3.1). These two components have been implemented
using the Java programming language [18]. This allows application portability.

The central node C is a process (daemon) that listens to client requests in a
fixed TCP port. After receiving n requests, C creates a new group and sends
a message with the users’ IP address and the number of the port to be used.
In order to improve the protocol’s performance, this message also contains the
large prime p, and the g ∈ Z∗

p element (see section 3). This reduces the number
of messages that must be transmitted. The configuration of the central node
includes the number n of users needed to form a group, the port number, and
the length of the large prime p.

The client application is a java applet which is accessed by an html web page
(see Figure 1) that allows users to make a search in a transparent manner.

Fig. 1. Client interface

The client interface displays a form field (similar to the one that can be found
in a classic web search engine) where the user must type her query. The search
process is started once the search button is pressed. The text is sent from the
form field to the applet using a Javascript code. The applet runs the proposed
UUP protocol establishing connections with all the group members and with
the web search engine. Finally, it shows the result to the user.

All communications between entities are performed using TCP connections.
Messages are implemented using the XML format.

12

4.2 Testing methodology

The UUP protocol can be configured with two different parameters: the group
size n and the key length l used by the cryptographic operations.

Obviously, the larger n is, the better the algorithm hides the real profile of
each user. However, when a user wants to submit a query, she has to wait until
another n− 1 users want to do the same. Thus, when n increases, the waiting
time needed to create a group also increases. In the same way, a larger group
implies more messages between the group members and therefore a higher
delay due to the communication.

The key length l refers to the size (in bits) of the ElGamal cryptosystem
(see section 2.1) used in the UUP protocol. A short key is considered not
secure, hence it is required a minimum key length. On the other hand, the
time consumed in the cryptographic operations (key generation, encryption,
decryption and re-masking) of the UUP protocol is directly related to the key
size used.

The UUP protocol should use a large n and l to hide the real users’ profiles and
to offer enough security. At the same time, n and l should be short in order to
introduce a low delay in the response. According to that, there is a trade-off
for both parameters. In order to tune our system and to find the values of n
and l that offer a reasonable combination of privacy, security and usability, we
have used two testing environments. These are a controlled environment and
an open environment (see Section 4.2.1).

The controlled environment is a Local Area Network (LAN). The time ob-
tained by the UUP protocol in this environment is not affected by external
factors. Thus, it allow us to evaluate the protocol behaviour in optimal condi-
tions and perform a tuning analysis of the values n and l. In this environment,
for each key length, we have run the protocol with different group sizes to see
how both parameters affect the query delay. The group size n and the key
length l that have been chosen are described in Section 4.3.1.

The results obtained in the tuning analysis within the controlled environment
show the maximum n and l values which can be used to get a low query
delay. In this environment, the protocol is evaluated in optimal conditions.
Therefore, any combination of n and l that results in a high query delay is
very likely to be unaffordable in the open environment (Internet).

According to that, the controlled environment provides the best configura-
tions. Then, these configurations are tested in the open environment in order
to get the real delay introduced by our proposal.

13

4.2.1 Equipment properties

The controlled environment refers to the execution of tests in a local area net-
work. The network that was used in our tests was connected to the University
network in order to get access to the web search engine. Nonetheless, all the
internal network traffic came only from nodes involved in our tests.

All computers (central node and clients) share the same configuration (see
Table 1). This uniformity allows us to get an average cost of the operations
performed with these settings. Note that each computer executes only a single
client application in each test.

Table 1
Controlled environment: equipment

CPU Intel Core 2 CPU 6320 at 1.86GHz

RAM 2 GBytes

Computers O.S. Microsoft Windows Server 2003

Java version Java 6 Update 5

Ethernet 100 Mbits

Network Switch 100 Mbits

In the open environment (see section 4.4), all the computers are located in
different cities, hence they are connected between them through the Internet.
Unlike the controlled environment, in this case all the computers have different
specifications and use different technologies (and speeds) to connect to the
Internet (see Table 2).

Table 2
Open environment: equipment

Server MacBook Thinkpad iMac PC

Air X61s

Specifications

Intel Intel Intel Intel Intel

CPU Pentium 4 Core 2 Duo Core 2 Duo Core 2 Duo Pentium D

at 2.8 GHz at 1.6 GHz at 1.6 GHz at 2.0 GHz at 2.8 GHz

RAM 1 GByte 2 GBytes 2 GBytes 2 GBytes 1 Gbyte

O.S. Debian Mac OS X MS Windows Mac OS X MS Windows

GNU/Linux Leopard Vista Business Leopard Vista Home

Java version Java 6 Java 6 Java 6 Java 6 Java 6

Update 1 Update 7 Update 7 Update 7 Update 7

Internet connection

Technology Gigabit Ethernet DSL DSL Cable DSL

Download 100 Mbits 6 Mbits 3 Mbits 6 Mbits 8 Mbits

Upload 100 Mbits 500 Kbits 300 Kbits 300 Kbits 750 Kbits

Connection Direct Router Bridge Router Router

Address public private public private private

DNAT DNAT DNAT

Like in the controlled environment, each computer executes only a single client
application in each test.

14

4.2.2 Time measures

Sections 4.3.3 and 4.4.2 provide aggregated results in milliseconds that show
the delay introduced by our scheme when submitting a single query. In addi-
tion to that, Sections 4.3.2 and 4.4.2 offer a detailed analysis of the time spent
on each protocol step. This is done to show which steps are the most sensitive
ones. Below, there is a description of each time interval:

• t0: time interval required to initialize the applet.
• t1: time interval required by Ui to connect with the central node and to get

a response. This response includes the information needed to contact with
the other members of the group and the parameters to create the group key
(see section 3.3.2).

• t2: time interval required by Ui to create her group key share αi.
• t3: time interval required by Ui to establish a connection with the other

group members.
• t4: time interval required by Ui to send her key share yi = gαi to the group

members.
• t5: time interval required by Ui to generate the group public key y using the

shares received from all group members.
• t6: time interval required by Ui to encrypt the query mi using the group

public key y.
• t7: time interval required by Ui to send the resulting ciphertext c0

i .
• t8: time interval required by Ui to re-mask the received ciphertexts and to

permute them.
• t9: time interval required by Ui to send the results which have been obtained

in the re-masking/permuting step.
• t10: time interval needed since the user Ui sends her ciphertext c0

i until the
last user broadcasts the ciphertexts {c1, · · · , cn} to all the group members
(see step 2 of the protocol defined in section 3.3.3). This period includes
neither the time required to perform the re-masking/permuting step (t8)
nor the time required to send the ciphertexts to the next user (t9).

• t11: time interval required by Ui to calculate the shares which are used to
decrypt the ciphertexts.

• t12: time interval required by Ui to send the shares to the group members.
• t13: time interval required by Ui to decrypt the ciphertext ci that she has

received. Note that Ui needs all the shares sent by the other group users to
perform this step.

• t14: time interval required by the web search engine to return the answer to
the query mi which has been sent by Ui.

• t15: time interval required by Ui to distribute the received answer to the
other users.

The proposed granularity of the algorithm allows us to determine the following
periods:

15

• TC : time interval required to perform cryptographic operations.

TC = t2 + t5 + t6 + t8 + t11 + t13

• TN : time interval required to perform network operations.

TN = t1 + t3 + t4 + t7 + t9 + t10 + t12 + t14 + t15

Note that t10 has been included as network time, although it includes the
cryptographic operations of other users and their communications.

4.3 Controlled testing environment

In the controlled environment, there is no traffic from external sources. There-
fore, the resulting delay can only be attributed to the proposed protocol.

In Section 4.3.1, we justify the selection of parameters n and l which has been
used in our tests. In Section 4.3.2, we provide a detailed analysis of the time
spent on each protocol step. Section 4.3.3 shows the time delay experienced
by our protocol in the controlled environment.

4.3.1 Parameter selection

We have studied how our system behaves with group sizes ranging from 3 to
10 users. We have made tests for n = 3, n = 4, n = 5 and n = 10. Then, we
have interpolated the values for groups of 6, 7, 8 and 9 users. The reason for
this selection is the following: Google answers around 100 million of queries
every day which represents an average value of 1157 queries per second. Those
queries can be modeled using a Poisson distribution. Then, if we have an
average value of 11.57 queries per hundredth of a second, the probability of
generating a group of n = 3 queries is close to 1 (see Figure 2 for different
values of n). According to those results, every hundredth of a second, the
central node is able to group 3 users willing to submit a query to the web
search engine.

Regarding the length of the keys (parameter l), at the present time l = 1024
bits is considered computationally safe [19]. According to that, we have tested
our scheme with a smaller length (l = 768 bits) and with a larger one (l = 1296
bits). In this way, we can examine how the key length influences the system’s
performance.

We used the Google web search engine in our tests. Each client had a list
of 1000 different queries which were selected randomly. The results presented

16

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 4 5 6 7 8 9 10 11

P
ro

ba
bi

lit
y

Group size (K)

Fig. 2. Probability of forming a group of n users in one hundredth of a second

in this paper are the average of all the values obtained by each client when
submitting 1000 queries to Google.

4.3.2 Detailed time analysis

 0

 100

 200

 300

 400

 500

 600

 700

 800

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

T
im

e
in

 m
s

Protocol steps

L=768 L=1024 L=1296

Fig. 3. Partial times with a group of three users (n = 3) using different key lengths

17

Figure 3 shows the partial times for n = 3 and for each key length l. Note
that, as expected, network times (TN) are approximately the same for all
the three key lengths. Similar results have been obtained for n = 4, n = 5
and n = 10 in the sense that network times are almost the same within the
same n value regardless of the key length l. On the other hand, the time
interval for cryptographic operations TC is proportional to l. The most costly
operations are the re-masking/permuting process (t8) and the encryption of
the ciphertexts (t6). Nevertheless, these time intervals are significantly lower
than the total cost of the network operations (TN).

Figure 4 shows how the time intervals are affected by the parameter n once the
key length l has been fixed. Note that in this case, the time intervals devoted
to cryptographic operations are similar for different values of n. The exception
occurs in t8 (the re-masking/permuting step), where the number of ciphertext
involved in the computations are exactly n. Network times vary moderately
when n grows.

 0

 200

 400

 600

 800

 1000

 1200

 1400

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

T
im

e
in

 m
s

Protocol steps (L=1024)

K=3 K=4 K=5

Fig. 4. Partial times with a fixed key length of l = 1024 bits and n = 3, 4, 5

Both figures show that t10 is the protocol’s step that introduces the highest
overhead into the process. This is the time interval required to receive the
results from the re-masking/swapping step. It grows when n or l increase.
The cause of that is the sequential order of the re-masking and permuting
operation. In this step, each user must wait until the last user has broadcast
the final round.

18

Table 3
Average time (in milliseconds) required to submit a query using our proposal

Group Key size

Size 768 1024 1296

3 1451.27 1901.44 2632.52

4 1912.20 2478.94 3603.97

5 2317.97 3311.29 4813.77

10 4896.42 8898.16 14325.73

4.3.3 Global time cost results

Table 3 shows the average time (in milliseconds) required to submit one query
using our proposal in the controlled environment. Results are given as a func-
tion of the key length l and the group size n.

These values include the time to submit a query to Google, which is around
300 ms (see t14 in Figure 3). In scenarios with three users (n = 3), there is
an increase of 1200 to 2300 milliseconds. The final value depends on the key
length.

Figure 5 shows, for each key length l, how the time interval increases when the
group size n increases. Thus, the time required to use the presented system
grows linearly with the number of users.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 3 4 5 6 7 8 9 10

T
im

e
in

 m
s

Size of the group

Total 768 Total 1024 Total 1296

Fig. 5. Average time required to submit a query with our system

19

Figure 6 shows that the time costs are higher when the number of users and
the key length grow. When using a small key length (768 bits), it is not
advisable to form groups larger than seven users. If a key of 1024 bits is in
use, groups should not be larger than 3 or 4 users. For keys of 1296 bits, the
best configuration is a maximum set of 3 users.

Time in ms for key length and group size

 3 4 5 6 7 8 9 10Group size
 768

 1024

 1280

Key

 0

 3000

 6000

 9000

 12000

 15000

Time in ms

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

Fig. 6. Cost in time based on the number of users and the length of the keys

4.4 Open environment

The results obtained in the controlled environment are not realistic. However,
they are useful to understand the effects of the group size and the key length
on the system.

Section 4.4.1 presents the parameters used in the open environment. Finally,
Section 4.4.2 shows the time intervals obtained in the open environment.

4.4.1 Parameter selection

According to the time obtained in the controlled environment (see Section 4.3.3),
we used n = 3 and l = 1024 in the open environment.

On one hand a key length below 1024 is not considered safe [19], on the other
hand, a key length larger than 1024 increases the computing time. Thus, a
length of 1024 bits was selected as the best trade-off between both concepts.

20

Regarding the group size, we performed our tests with n = 3 because in the
controlled environment the query delay was larger than 2.5 seconds for bigger
groups (see Table 3).

4.4.2 Time analysis

Figure 7 shows the time intervals with n = 3 and l = 1024 in the controlled
and open environments. As expected, the cost of the cryptographic operations
is very similar in both environments. Only t8 is slightly bigger because some
computers in the open environment have a slower CPU than the computers
in the controlled environment.

The network time is notably higher in the open environment. There, the time
interval required to connect with the central node t1 increases by 700 ms.
Besides, it can be noticed a slightly increment in {t3, t4, t7, t9, t12, t14}. In t10,
the users do the operations sequentially. Thus, each operation only experiences
a slightly increment but the aggregation of all these increments results in a
significant delay in comparison with the controlled environment. Finally, the
most significant overhead is introduced by t15 (in this step, the answers from
the web search engine are broadcast to the group members). This overhead
should be evaluated and improved in a future version of the proposed protocol.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

T
im

e
in

 m
s

Protocol steps

Controlled environment Open environment

Fig. 7. Partial times with a key length of l = 1024 bits and n = 3 in the controlled
and open environments

As a result of our tests in the open environment, we got a total delay of 5.2
seconds using the UUP protocol with groups of three users (n = 3) and a key

21

length of 1024 bits. According to that, our scheme reduces significantly the
query delay achieved by previous proposals [10].

4.5 Operational considerations

In previous sections, we have discussed the technical details of the proposed
system regarding implementation issues and equipment requirements. Besides,
we have also analyzed the computation and communication costs. However,
there are other operational considerations that should be taken into account
when deploying this scheme in a real scenario.

First of all, from the strictly technical point of view, the proposed scheme
provides a certain level of privacy in front of the web search engine at the cost
of introducing an affordable delay in the query process. However, from the user
point of view, another cost is added in the sense that users are submitting
queries from other users. Obviously, a certain user may not be comfortable
with the content of other users’ queries and may not desire to submit them to
the web search engine. This problem can be solved using a filter that discards
queries depending on their content. This filter must be carefully designed in
order to not require the final user to perform an excessive amount of work.
How to implement this is outside the scope of this paper and requires further
research. Two possible directions to address this issue would be: (i) allow the
users to select categories of words to be discarded. These categories would be
based on the ones defined by the Open Directory Project (ODP) [20]; and (ii)
use ontologies to process the content of the queries. [21,22] are examples of
the work done in this field.

On the other hand, the proposed scheme is based on a central server that
connects different users who want to submit a query. Note that the workload
of the central server is really low since it only offers to users contact details
about other users. The rest of the steps needed to form the group are entirely
performed by the users. According to that, it is possible to assume that some
central nodes can be voluntary working to improve the privacy of the users.
In fact, the Tor network, which has a similar privacy preserving objective,
is based on the use of voluntary nodes (more than 1800 [23]). Besides, the
workload of a Tor node is higher than the workload of the central node used
in our scheme.

Finally, another operational consideration arises regarding the number of users
needed to form a group and the time each user has to wait until that number is
available. The main objective of our proposal is not to offer anonymity to the
users who submit queries to a web search engine. Instead of that, it provides
non-accurate user profiles to the web search engine. According to that, the

22

system is still valid if the users submit some of their own queries. This can be
implemented in the client application using a timeout. If, after this timeout,
the group has not been formed, the user can send her query to the web search
engine directly.

The correctness of this measure can be controlled by keeping track of the
total number of queries that have been submitted directly. This number must
be kept below a predefined threshold in order to provide a useless profile to
the web search engine. Defining the correct value for this threshold requires a
detailed study which is not the purpose of this paper. Nevertheless, the work
presented in [24] can give us an approximation of this value. In [24], the system
submits τ fake queries for each legitimate query. In order to define the privacy
level which is achieved, the system uses one vector to store all the fake queries
that have been submitted and another vector to store the legitimate ones. The
similarity between both vectors defines the privacy level achieved. The results
provided by [24] show a fairly good privacy level when 2 ≤ τ ≤ 4.

5 Conclusions and further research

Web search engines are gathering more and more private information from
individuals since they have become the main tool for finding information. In
the last years, specific proposals for protecting the privacy of the users of
web search engines have been presented. Those proposals improve the general
schemes used so far, like anonymous web browsing, but they still experience
a moderate delay in the query response.

In this paper, a novel protocol for protecting the users’ privacy when dealing
with a web search engine has been proposed. Our scheme does not require
any change in the server side and, moreover, the server is not required to
collaborate with the user. The proposed protocol has been implemented to
prove its functionality. Statistical results of the protocol’s performance show
that the presented scheme improves previous proposals. In addition to that,
these results also prove that this protocol can be applied in real scenarios.

Our future research will focus on two different lines:

• We will try to improve the performance of the protocol by reducing the
delay introduced. On one hand, we should review the re-masking/swapping
process. At the present implementation, the sequential order followed by
each user in this step increases the total cost. This procedure is derived
from the cryptographic primitives used. Therefore, other approaches should
be analyzed in order to improve this protocol step. On the other hand, the
time required to distribute the received answers to the other users should

23

also be reduced.
• Our security analysis assumes that the users follow the protocol correctly

and no collusion between entities is allowed. Relaxing those assumptions
implies that more strong cryptographic operations should be included in the
protocol to ensure its security. This has to be studied carefully because the
use of expensive cryptographic mechanisms may introduce an unaffordable
query delay.

Disclaimer and acknowledgments

The authors thank the anonymous reviewers for their valuable comments that
helped to improve the quality of this paper. The authors are with the UNESCO
Chair in Data Privacy, but they are solely responsible for the views expressed
in this paper, which do not necessarily reflect the position of UNESCO nor
commit that organization. Thanks go to Alexandre Garcia for his help in
implementing the protocol. This work was partly supported by the Spanish
Ministry of Education through projects TSI2007-65406-C03 “E-AEGIS” and
CONSOLIDER CSD2007-00004 “ARES”, and by the Government of Catalo-
nia under grant 2005 SGR 00446.

References

[1] D. Fallows, “Search Engine Users: Internet searchers are confident, satisfied and
trusting, but they are also unaware and näıve”, Pew/Internet & American Life
Project, 2005.

[2] D. Sullivan, “comScore Media Metrix Search Engine Ratings”, comScore,
http://searchenginewatch.com, 2006.

[3] Google History, http://www.google.com/history, 2009.

[4] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information
retrieval”, IEEE Symposium on Foundations of Computer Science – FOCS, pp.
41-50, 1995.

[5] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information
retrieval”, Journal of the ACM, vol. 45, pp. 965–981, 1998.

[6] E. Kushilevitz and R. Ostrovsky, “Replication is not needed: single database,
computationally-private information retrieval”, Proc. of the 38th Annual IEEE
Symposium on Foundations of Computer Science, pp. 364–373, 1997.

[7] R. Ostrovsky and W. E. Skeith-III, “A survey of single-database pir: techniques
and applications”, Lecture Notes in Computer Science, vol. 4450, pp. 393–411,
2007.

24

[8] B. Chor, N. Gilboa, and M. Naor, “Private information retrieval by keywords”,
Technical Report TR CS0917, Department of Computer Science, Technion,
1997.

[9] Tor Project, http://www.torproject.org, 2009.

[10] F. Saint-Jean, A. Johnson, D. Boneh, and J. Feigenbaum, “Private Web
Search”, Proceedings of the 2007 ACM workshop on Privacy in electronic society
– WPES’07, pp. 84–90, 2007.

[11] X. Shen, B. Tan, and C.X. Zhai, “Privacy Protection in Personalized Search”,
ACM SIGIR Forum, vol. 41, no. 1, pp. 4–17, 2007.

[12] M. Barbaro and T. Zeller, “A face is exposed for AOL searcher No 4417749”,
New York Times, August 2006.

[13] Y. Xu, B. Zhang, Z. Chen, and K. Wang, “Privacy-Enhancing Personalized Web
Search”, International World Wide Web Conference, pp. 591–600, 2007.

[14] Y. Desmedt and Y. Frankel, “Threshold cryptosystems”, Advances in
Cryptology – CRYPTO’89, Lecture Notes in Computer Science, vol. 335, pp.
307–315, 1990.

[15] T. ElGamal, “A public-key cryptosystem and a signature scheme based on
discrete logarithms”, IEEE Transactions on Information Theory, vol. 31, pp.
469–472, 1985.

[16] D. Chaum and T. Pedersen, “Wallet databases with observers”, Advances in
Cryptology – CRYPTO’92, Lecture Notes in Computer Science, vol. 740, pp.
89–105, 1992.

[17] M. Abe, “Mix-networks on permutation networks”, Advances in Cryptology -
Asiacrypt’99, Lecture Notes in Computer Science, vol. 1716, pp. 258-273, 1999.

[18] Sun Microsystems, JAVA Programming language, http://java.sun.com, 2008.

[19] Recommendation for Key Management, Special Publication 800–57 Part 1,
NIST, 2007.

[20] Open Directory Project, http://www.dmoz.org/, 2009.

[21] D. Brewer, S. Thirumalai, K. Gomadamk, K. Li, “Towards an Ontology
Driven Spam Filter”, Proceedings of the 22nd International Conference on Data
Engineering Workshops, 2006.

[22] S. Youn, D. McLeod; “Efficient Spam Email Filtering using Adaptive
Ontology”, Proceedings of the International Conference on Information
Technology, pp. 249–254, 2007.

[23] Tor Node Status, https://torstat.xenobite.eu/, 2009.

[24] T. Kuflik, B. Shapira, Y. Elovici, A. Maschiach, “Privacy Preservation
Improvement by Learning Optimal Profile Generation Rate”, Lecture Notes
in Computer Science, vol. 2702, pp. 168–177, 2003.

25

