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Abstract

Many efforts have been devoted in recent years to constructing secure schemes
in certificateless cryptography. The aim is to eliminate the key escrow prob-
lem of identity-based cryptography. However, most of the work takes place
in traditional certificateless cryptography, which suffers from the single point
of failure problem. Hierarchical cryptography exploits a practical security
model to mirror the organizational hierarchy in the real world and hence can
eliminate the single point of failure problem. To incorporate the advantages
of both types of cryptosystems, in this paper we instantiate hierarchical
certificateless cryptography by formalizing the notion of hierarchical certifi-
cateless signatures. A concrete hierarchical certificateless signature scheme
is also proposed. The security of our scheme is proven under the computa-
tional Diffie-Hellman assumption. As to efficiency, our scheme has constant
complexity, regardless of the depth of the hierarchy. Therefore, our proposal
is secure and scalable.
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1. Introduction

Digital signatures are one of the most important primitives in public
key cryptography. The public key of a signer can be leveraged by anyone
to verify whether a signature attributed to this signer is valid or not. A
problem for public key cryptography is that a user must be bound with her
public key. The usual approach to solving this problem is to use a public key
infrastructure (PKI), in which a trusted certificate authority authenticates
the users’ public keys. However, in practice, the management of public key
certificates is extremely demanding in terms of computing time and storage
space.

Identity-based cryptography (IBC) [24] was introduced to reduce the
certificate management overhead in traditional PKI based cryptosystems.
In IBC systems, the public key of a user is just her identity, e.g., an e-
mail address, IP address, etc. Therefore, there is no need to maintain a
complicated system to manage the addition, update or withdrawal of public
key certificates. Hence, IBC systems are very efficient for some applications.
Despite its advantages, the basic IBC system suffers from two limitations in
practice. The first one is the single point of failure problem. In a basic IBC
system, a single trusted third party (TTP) called Private Key Generator
(PKG) is employed to generate a private key for each user by taking as
input PKG’s master secret key and the user’s identity. Although having a
single PKG would completely eliminate on-line lookup, it is undesirable for
a large open network because the PKG may become a bottleneck. The PKG
needs not only to generate private keys for a large number of users, but also
to verify the identities of the users. The second limitation is the so-called
key escrow problem. Since the PKG is used to generate the full private keys
of the users in the system, the PKG knows each user’s private key and a
malicious PKG can forge signatures on behalf of any user without being
detected. The above two limitations make IBC systems not scalable and
not applicable to large open networks in which it is impractical to realize a
third party fully trusted by all the distributed users.

Hierarchical identity-based cryptography (HIBC) [15] efficiently over-
comes the single point of failure problem in IBC schemes. In HIBC, a root
PKG is used to distribute the workload by delegating private key generation
and identity authentication to lower-level PKGs. In this setting, multiple
levels of PKGs and users as leaf nodes form a tree-like structure. HIBC
was first instantiated by Horwitz and Lynn [15] with a hierarchical identity-
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based encryption (HIBE) scheme. Subsequent to the work in [15], Gentry
and Silverberg [12] proposed a scalable HIBE scheme with full collusion
resistance and chosen-ciphertext security. A hierarchical identity-based sig-
nature (HIBS) scheme was proposed in [12] as well. The concepts of HIBE
and HIBS have been further investigated and more works can be found in
[5, 7, 9, 20, 23]. HIBC efficiently overcomes the single-point bottleneck of
IBC systems. However, it does not address the key escrow problem of such
systems.

Certificateless cryptography (CLC) was introduced by Al-Riyami and
Paterson to mitigate the key escrow problem. CLC also employs a third
party called Key Generation Center (KGC) to help a user generate her
private key. However, unlike the PKG in IBC, the KGC in CLC only extracts
a partial private key for each user by taking as input a user’s identity and the
master key of the KGC. The full private key of a user is computed from the
partial private key combined with some secret information chosen by the user
herself. The corresponding public key is computed from the system’s public
parameters and the secret information of the user, and is finally published
by the user herself. A number of contributions [1, 2, 10, 16, 17, 18, 19, 21,
26, 27, 30, 31, 29] have been devoted to the construction of secure schemes
in CLC. In [1], Al-Riyami and Paterson proposed a certificateless encryption
(CLE) scheme with chosen ciphertext security. A certificateless signature
(CLS) scheme was also presented in [1] but no formal proof of security was
provided. Subsequently, the security model of CLS schemes was formalized
in [18] and the security of the Al-Riyami-Paterson CLS scheme was analyzed
in this model. The security model of CLS schemes was further developed
in [27] and later in [16, 17]. Among them, Huang et al. [17] revisited the
security models of CLS schemes.

From the above discussions, one may find that neither CLC nor HIBC
address the single point of failure and the secret key escrow problems in
IBC systems simultaneously. To fill this gap, hierarchical certificateless
cryptography (HCLC) is introduced in [1]. In an HCLC system, a root
KGC distributes the workload by delegating partial private key generation
and identity authentication to lower-level KGCs. Multiple levels of KGCs
and users as leaf nodes form a tree-like structure. This hierarchical design
matches the structure of social organizations in the real world very well.
HCLC was first instantiated in [1] with a hierarchical certificateless encryp-
tion scheme. However, no security formalization has been provided for that
scheme so far. This paper concentrates on hierarchical certificateless signa-
tures (HCLSs), which inherit the advantages of hierarchical identity-based
signatures without suffering from the key escrow problem.
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1.1. Our Contributions

In the preliminary version [28] of this paper, we presented the first for-
malization of HCLSs as a new HCLC primitive. We explicitly defined the
behaviors of adversaries against HCLSs with the help of a number of ora-
cles. Two types of adversaries, i.e., Type I adversary and Type II adversary
(see Section 2.2), were distinguished to simulate the collusive users and the
malicious KGCs, respectively. Then we defined security as existential un-
forgeability against adaptive chosen-message attacks. We believe this strong
security notion is suitable for most applications. We proposed a scalable
HCLS scheme in which, to verify the validity of a signature from a signer, a
verifier only needs to obtain the public parameters of the signer’s root KGC,
the user’s identifying information (a user is uniquely identified by the path
from the root to the user as a leaf node in the hierarchical tree) and the
corresponding public key list. The verifier does not need an on-line lookup
of the identities and public keys of the lower-level KGCs. The signing cost
and the signature size are both constant, independent of the depth of the
hierarchy. As for security, under the computational Diffie-Hellman (CDH)
assumption, we showed that our scheme is provably secure against Type II
adversaries under existential forgery attacks in the random oracle model [3].

In [28], we proposed a concrete HCLS scheme and gave a preliminary
analysis of it. In this version, we provide a detailed analysis of the scheme.
Firstly, we further study the behaviors of the adversaries against HCLSs.
We show that the Type I and II adversaries in our security definition have
similar abilities as the super Type I and Type II adversaries in [17] (see
Section 2.2), who are the strongest adversaries against CLS so far. We also
prove that our scheme is secure against enhanced Type I adversaries under
existential forgery attacks. Secondly, we show how to detect a dishonest
behavior of a malicious KGC in our scheme. Thirdly, we address the key
revocation problem in HCLC. Fourthly, we discuss the computational cost
of the proposed scheme. Finally, we distinguish our work from possible
alternatives, namely a generic construction and a construction with short
signatures.

The rest of this paper is organized as follows. In Section 2, we formalize
the definition of HCLS schemes by defining the adversarial behaviors and the
security notion of existential unforgeability. Our HCLS scheme is proposed
in Section 3 and a detailed security analysis is given in Section 4. Section 5
distinguishes our work from other related HCLS constructions. We conclude
our paper in Section 6.
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2. Definitions

In this section, we formalize the notion of hierarchical certificateless sig-
natures. We first define the algorithms underlying an HCLS scheme. Then
we model the adversarial behaviors and present the main security notion,
i.e., existential unforgeability against adaptive chosen-message attacks.

2.1. Hierarchical Certificateless Signatures

In an HCLS scheme, the entities include the root KGC, the lower-level
KGCs and the users (signers). Each entity has a unique public identity ID.
These entities form a structure of a hierarchical tree where the root KGC is
at the top and the users are at the bottom, with the lower-level KGCs as
the nodes between them.

In the hierarchy, each entity is uniquely identifiable by the path from the
root KGC to the entity itself. Hence, we use an identity tuple (ID0, ..., IDn)
as the information to identify the position of an entity with IDn in the
hierarchy, where n is the tree depth from the root KGC with ID0 to the
entity with IDn.

For 0 ≤ i ≤ n− 1 and n ≥ 1, the entity with identity IDi is the parent
node of the entity with identity IDi+1. The entity with identity IDn can
be either a lower-level KGC or a user as a leaf node1. For clarity, we use
Kn to represent a lower-level KGC at level n, and Un to represent a user
at the same level, respectively. Specifically, K0 denotes the root KGC with
identity ID0, and if n = 1 for all the users, the system degenerates to a
regular certificateless signature scheme.

An HCLS scheme consists of eight polynomial-time (probabilistic or
deterministic) algorithms: Root-Setup, Lower-Level-Setup, Set-Secret-Value,
Set-Public-Key, Partial-Private-Key-Extract, Set-Private-Key, Sign and Verify.

• Root-Setup: It is run by the root KGC K0. On input a security pa-
rameter λ, K0 selects a root private key s0 and a list of public system
parameters params. params will be a common input to the rest of
algorithms. For simplicity, we omit it in the following specifications.

• Lower-Level-Setup: This is an interactive protocol that allows lower-
level KGCs to be added to the system. It runs between Kn with
identifying information (ID0, ..., IDn), corresponding public key list

1To distinguish whether an entity is KGC or a user, we can adopt the convention that
the identity of a KGC begins with the prefix KGC and the identity of a user with the
prefix user.
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(P0, ..., Pn) and its parentKn−1 with identifying information (ID0, ..., IDn−1),
corresponding public key list (P0, ..., Pn−1). When the protocol begins,
Kn chooses a secret value and generates its public key; then Kn sends
its identity and public key to Kn−1. After receiving the information,
Kn−1 calculates the partial private key for Kn and sends it to Kn. If
this protocol ends without failing, Kn obtains its full private key.

• Set-Secret-Value: This algorithm is run by Un. On input Un’s identify-
ing information (ID0, ..., IDn) and an ordered public key list (P0, ..., Pn−1),
where Pi, 1 ≤ i ≤ n− 1 is the public key of Ki, this algorithm outputs
a secret value sn. This secret value will be used by Un to generate her
private key.

• Set-Public-Key: This algorithm is run by Un. On input Un’s secret
value sn, identifying information (ID0, ..., IDn) and the corresponding
public key list (P0, ..., Pn−1), this algorithm generates Un’s public key
Pn.

• Partial-Private-Key-Extract: A user Un may request her parent Kn−1 to
run this algorithm to generate a partial private key for her. On input
Un’s identifying information (ID0, ..., IDn), the corresponding public
key list (P0, ..., Pn) and Kn−1’s private key, this algorithm generates a
partial private key Dn for Un.

• Set-Private-Key: This algorithm is run by Un. On input Un’s secret
value sn, partial private key Dn, identifying information (ID0, ..., IDn)
and the corresponding public key list (P0, ..., Pn), this algorithm gen-
erates Un’s private key Sn.

• Sign: It is run by a user (signer) Un. It accepts a message m, Un’s
private key Sn, identifying information (ID0, ..., IDn) and the cor-
responding public key list (P0, ..., Pn), and generates an HCLS σ on
message m under (ID0, ..., IDn, P0, ..., Pn).

• Verify: This algorithm is run by a verifier. It accepts a message m, a
purported HCLS σ, the signer’s identifying information (ID0, ..., IDn)
and the public key list (P0, ..., Pn), and outputs true or false to rep-
resent that σ is valid or not, respectively.

Note that the user’s public key is required as an input of the Partial-
Private-Key-Extract algorithm. In other words, when a user Un requests a
partial private key from her parent Kn−1, Un should first generate her public
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key. This is slightly different from the definition in [1]. This adaptation
enables us to exploit the public key binding technique in [1]. With that
technique, the security level of an HCLS scheme can achieve trust level 3
according to [11], the same security level enjoyed by the traditional PKI-
based public key cryptography. The above requirement can also be removed.
However, like the schemes in [1], the security level of the resulting HCLS
scheme can only achieve trust level 2 according to [11].

2.2. Security Model

Before defining the security of HCLS schemes, we first review the ad-
versaries in CLC. A secure CLS scheme should resist the attacks from two
types of adversaries, known as ‘Type I adversary’ and ‘Type II adversary’.
In [1], these two types of adversaries are respectively defined as follows:

• Type I adversary is an attacker (colluding with users) who does not
know the KGC’s private key, but who can replace the public key of
any user with a value of his choice.

• Type II adversary is an attacker (colluding with KGC) who owns the
KGC’s private key but cannot perform any public key replacement.

In [16, 17], Type II adversary is enhanced by additionally allowing him to
replace the public key of any user except the target one. That is, the attacker
can collude with the KGC and all users except the target user. We observe
that this type of attack is also possible in a hierarchical setting. Hence,
we respectively define the Type I adversary and the Type II adversary as
follows:

• Type I adversary AI does not know the root KGC’s private key or the
partial private key (or private key) of any lower-level KGC, but he can
replace the public key of any entity except the root KGC with a value
of his choice.

• Type II adversary AII knows the private key of any KGC (including
the root and all lower-level KGCs), and can replace the public key of
any lower-level KGC and any user except AII ’s target user.

The security model for HCLS schemes is defined by two games which in-
volve a challenger and a Type I or II adversary. In the games, the challenger
sets up the system parameter and controls several oracles defined below:
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• Lower-Level-Setup Oracle: The input of this oracle is a KGC Kn’s iden-
tifying information (ID0, ..., IDn). It generates the secret value sn and
public key Pn for Kn. We require that the public key of Ki has been al-
ready generated for 1 ≤ i ≤ n−1. In other words, the attacker can only
query (ID0 , ..., IDn) after querying (ID0, ..., IDi) for 1 ≤ i ≤ n− 1.

• Reveal-KGC Oracle: The input of this oracle is a KGC Kn’s identify-
ing information (ID0, ..., IDn), and the corresponding public key list
(P0, ..., Pn). It outputs the partial private key Dn of Kn.

• Public-Key Oracle: The input of this oracle is Un’s identifying informa-
tion (ID0, ..., IDn). It outputs the public key Pn of user Un.

• Partial-Private-Key Oracle: The input of this oracle is Un’s identify-
ing information (ID0, ..., IDn), and the corresponding public key list
(P0, ..., Pn). It outputs the partial private key Dn of Un.

• Secret-Value Oracle: The input of this oracle is Un’s identifying infor-
mation (ID0, ..., IDn). It outputs the secret value sn of Un. Note that
if the public key of a user is replaced by the adversary, the challenger
will not know the corresponding secret value. In this case, the chal-
lenger returns the original secret value of the user. The oracle service
in this situation models the collusion between the attacker and the
user.

• Public-Key-Replacement Oracle: On input (ID0, ..., IDn, P
′
n), this ora-

cle sets P ′n as the new public key of the entity (either a user Un or a
KGC Kn) whose identifying information is (ID0, ..., IDn). Here P ′n is
an element chosen from the public key space by the adversary.

• Sign Oracle: The input of this oracle is a tuple (ID0, ..., IDn, P0, ..., Pn,m).
It outputs a valid HCLS σ on message m, where (ID0, ..., IDn) is the
identifying information of a user Un and (P0, ..., Pn) is the correspond-
ing public key list chosen by the adversary.

A Type I or II adversary is allowed to query some or all of the above oracles.
In [17], Type I/II adversary is further divided into three types, namely

normal, strong and super Type I/II adversaries, depending on which kind of
signatures an adversary can query during the Sign Oracle queries. A normal
Type I/II adversary can only obtain some message-signature pairs which are
valid under the original public key from the target signer. A strong adversary
can obtain message-signature pairs which are valid under the replaced public
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key if he can supply the secret value corresponding to the replaced public
key. Finally, a super adversary can obtain some message-signature pairs
which are valid under the public key chosen by himself without supplying
the secret value corresponding to the public key. From the above definitions,
it is easy to see that the super Type I/II adversary is the strongest one.

Now we present the security model for HCLS schemes. The model is
defined by the following two games played between a challenger C and an
adversary AI or AII . In the games, we treat Type I and II adversaries as
super Type I and II adversaries.

Game I (for Type I Adversary)

This game is played between a challenger C and a Type I adversary AI ,
and comprises three phases.

Phase I-1: C first runs Root-Setup to generate the root private key and the
system parameter list params. Then C sends params to AI but keeps the
root private key.

Phase I-2: In this phase, AI can adaptively query the Lower-Level-Setup Ora-
cle, Public-Key Oracle, Partial-Private-Key Oracle, Secret-Value Oracle, Public-
Key-Replacement Oracle and Sign Oracle defined above. However, before
querying those oracles, we require that the public keys corresponding to the
identities in the identifying information have been already generated. That
is, the hierarchy of the lower-level KGCs has been fixed before the attacker
queries the rest of oracles. This requirement is reasonable because, in prac-
tice, the hierarchy is formed before the users join the system or generate
signatures.

Phase I-3: Finally, AI outputs a tuple (m∗, σ∗, ID∗0, ..., ID
∗
n, P

∗
0 , ..., P

∗
n), in

which (ID∗0, ..., ID
∗
n) is the identifying information of the target user U∗n,

(P ∗0 , ..., P
∗
n) is the public key list chosen by AI , ID∗0 = ID0 and P ∗0 = P0.

We say that AI wins Game I if the above tuple satisfies the following
requirements:

1. σ∗ is a valid signature on m∗ under (ID∗0, ..., ID
∗
n, P

∗
0 , ..., P

∗
n).

2. (ID∗0, ..., ID
∗
n, P

∗
0 , ..., P

∗
n) has never been submitted to the Partial-Private-

Key Oracle.

3. (ID∗0, ..., ID
∗
n, P

∗
0 , .., P

∗
n ,m

∗) has never been submitted to the Sign Or-
acle.

We note that, in the above game, AI is not allowed to query the Reveal-
KGC Oracle. This restriction is reasonable, because AI ’s final goal is to
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generate a signature on behalf of his target user. If he can query the Reveal-
KGC Oracle, then he can learn the partial private key of a lower-level KGC.
Since AI can replace the public key of any entity, he can extract the full
private key of the lower-level KGC corresponding to the replaced public
key. Finally, AI can forge any signature of any user that is valid under the
revealed KGC’s identifying information and the corresponding public keys,
and the identity of the user and the corresponding public key.

Game II (for Type II Adversary)

This game is played between a challenger C and a Type II adversary AII .
The game comprises three phases as follows.

Phase II-1: C runs Root-Setup to generate the root private key and the
system parameter list params, then C sends params and root private key
to AII .

Phase II-2: Similarly to Game I, AII can query the following oracles as de-
fined in Game I: Lower-Level-Setup Oracle, Public-Key Oracle, Partial-Private-
Key Oracle, Secret-Value Oracle, Public-Key-Replacement Oracle and Sign Ora-
cle. Furthermore, we additionally allow AII to query the Reveal-KGC Oracle,
which is used to reveal the partial private keys of lower-level KGCs.

Phase II-3: Finally, AII outputs a tuple (m∗, σ∗, ID∗0, ..., ID
∗
n, P

∗
0 , ..., P

∗
n), in

which (ID∗0, ..., ID
∗
n) is the identifying information of the target user U∗n and

(P ∗0 , ..., P
∗
n) is the corresponding public key list, ID∗0 = ID0 and P ∗0 = P0.

We say that AII wins Game II if the above tuple satisfies the following
requirements:

1. σ∗ is a valid signature on m∗ under (ID∗0, ..., ID
∗
n, P

∗
0 , ..., P

∗
n).

2. P ∗n is the original public key of the target user U∗n. That is, (ID∗0, ..., ID
∗
n, P

′
n)

has never been submitted to the Public-Key-Replacement Oracle, where
P ′n denotes any public key except P ∗n .

3. AII has never requested the secret value of the user possessing public
key P ∗n .

4. (ID∗0, ..., ID
∗
n, P

∗
0 , ..., P

∗
n ,m

∗) has never been submitted to the Sign Or-
acle .

Definition 1. An HCLS scheme is existentially unforgeable under adaptive
chosen-message attacks iff the probability of success of AI in Game I and
AII in Game II is negligible.
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3. A Hierarchical Certificateless Signature Scheme

3.1. Bilinear Maps

Let G1 be an additive group of prime order q and G2 be a multiplicative
group of the same order. Let e : G1×G1 −→ G2 be a bilinear map with the
following properties:

1. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1, a, b ∈ Z∗q .
2. Non-degeneracy: There exists P ∈ G1 such that e(P, P ) 6= 1.

3. Computability: There exists an efficient algorithm to compute e(P,Q)
for any P,Q ∈ G1.

The Weil pairing [6] on elliptic curves is an example of such a map.
We review the computational Diffle-Hellman (CDH) problem in G1. The

CDH assumption states that any polynomial-time algorithm has only neg-
ligible success probability of solving the CDH problem. This assumption
underlies our scheme.

Computational Diffle-Hellman (CDH) Problem in G1: Given a gen-
erator P of G1 and (aP, bP ) for unknown a, b ∈ Z∗q , compute abP .

3.2. The Proposal

• Root-Setup: On input a security parameter λ, this algorithm runs as
follows:

1. Choose q,G1,G2, e as defined in Section 3.1.

2. Select a random generator P ∈ G1.

3. Choose s0 ∈ Z∗q at random as the root private key and set P0 =
s0P as the public key of the root KGC K0.

4. Choose cryptographic hash functions H1, ...,H4 : {0, 1}∗ −→ G1.

The system parameters are params = (q,G1,G2, e, P, P0, H1, ...,H4, ID0,M),
where ID0 is the identity of K0 andM = {0, 1}∗ is the message space.

• Lower-Level-Setup: For n ≥ 1, let Kn’s identifying information be
(ID0, ..., IDn) and the public key of Ki be Pi, 1 ≤ i ≤ n−1. When Kn
joins the system, it runs this protocol with its parent Kn−1 as follows:

1. Kn does the following:

(a) Choose a random sn ∈ Z∗q as the secret value and set Pn =
snP as its public key.

(b) Send (IDn, Pn) to Kn−1.
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2. LetKn−1 possess private key (sn−1, Dn−1). When receiving (IDn, Pn)
from Kn, Kn−1 does as follows:

(a) Compute Qn = H1(ID0, ..., IDn, P0, ..., Pn).
(b) Compute Dn = Dn−1 + sn−1Qn. Here, for consistency, we

define D0 = 0.
(c) Send Dn to Kn through a secure channel.

3. Kn sets its private key as (sn, Dn).

• Set-Secret-Value: On input Un’s identifying information (ID0, ..., IDn)
and the corresponding public key list (P0, ..., Pn−1), Un chooses sn ∈ Z∗q
at random and outputs sn as her secret value.

• Set-Public-Key: On input Un’s secret value sn, identifying information
(ID0, ..., IDn) and the corresponding public key list (P0, ..., Pn−1), Un
outputs Pn = snP as her public key.

• Partial-Private-Key-Extract: On input Un’s identifying information (ID0, ...,
IDn) and the corresponding public key list (P0, ..., Pn), Kn−1 computes
the partial private key for Un as follows:

1. Compute Qn = H1(ID0, ..., IDn, P0, ..., Pn).

2. Select x′ ∈ Z∗q at random and compute R′ = x′P .

3. Compute E = H2(ID0, ..., IDn, P0, ..., Pn).

4. Compute D′n = Dn−1 + sn−1Qn + x′E.

5. Output the partial private key Dn = (R′, D′n).

Un can verify the validity of the partial private key by checking

e(D′n, P )
?
= e(R′, E)

n∏
i=1

e(Pi−1, Qi),

where Qi = H1(ID0, ..., IDi, P0, ..., Pi), 1 ≤ i ≤ n.

• Set-Private-Key: On input Un’s secret value sn, partial private key Dn,
identifying information (ID0, ..., IDn) and the corresponding public
key list (P0, ..., Pn), Un sets Sn = (sn, Dn) as her private key.

• Sign: Let the signer Un have identifying information (ID0, ..., IDn),
public keys (P0, ..., Pn) and private key Sn = (sn, Dn), where Dn =
(R′, D′n). To sign a message m ∈ M, Un uses the private key Sn
and performs the following steps of which the first four can be pre-
computed:
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1. Compute Qi = H1(ID0, ..., IDi, P0, ..., Pi) for 1 ≤ i ≤ n.

2. Compute E = H2(ID0, ..., IDn, P0, ..., Pn).

3. Compute R = R′ + xP,W = D′n + xE for a randomly chosen
value x ∈ Z∗q .

4. Compute U = yP for a randomly chosen value y ∈ Z∗q .
5. Compute F = H3(ID0, ..., IDn, P0, ..., Pn,m), T = H4(ID0, ...,
IDn, P0, ..., Pn,m).

6. Compute V = W + snF + yT .

7. Output σ = {R,U, V } as the HCLS on m.

• Verify: To verify an HCLS σ = {R,U, V } on message m under (ID0, ...,
IDn, P0, ..., Pn)2, the verifier performs the following steps:

1. Compute Qi = H1(ID0, ..., IDi, P0, ..., Pi) for 1 ≤ i ≤ n.

2. Compute E = H2(ID0, ..., IDn, P0, ..., Pn).

3. Compute F = H3(ID0, ..., IDn, P0, ..., Pn,m), T = H4(ID0, ..., IDn,
P0, ..., Pn,m).

4. Check whether

e(V, P )
?
= e(R,E)e(U, T )e(Pn, F )

n∏
i=1

e(Pi−1, Qi) (1)

holds with equality. Output true if the equality holds; otherwise,
output false.

The technique adopted in our scheme and most of the existing signature
schemes in HIBC is similar to that of the sequential aggregate signature.
The sequential aggregate signature is computed by letting each signer add
her signature to an aggregate signature sequentially. The size of the final
aggregate signature is expected to be independent of the number of signers.
In existing sequential aggregate signature schemes, all signers use the same
signature generation algorithm to generate signatures. However, existing
efficient certificateless aggregate signature schemes require all the signers to
agree on a common string in advance [32]. In an HCLS scheme, it seems
impractical for all the KGCs and signers to agree on a same common string.
Our technique is slightly different from the traditional one. In our scheme,
a signer and her parent use specific signature generation algorithms to gen-
erate signatures and partial private keys, respectively.

2We notice that the identifying information and the corresponding public key list may
need to be provided to a signature verifier along with the signature itself. However, the
signature itself consists of only three group elements.
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3.3. Implementation Concerns
In an HCLS scheme, if a (root or lower-level) KGC replaces a public key

of a user and forges a signature of this user, then the KGC leaves evidence
of his bad behavior, and such an action can be easily detected. In our HCLS
scheme, the partial private key delivered to a user binds the user’s identifying
information and the corresponding public key list. This binding effectively
restricts the user to using a single public key, since the user can now only
compute one private key from the partial private key. If a KGC replaces
a public key of a user and forges a signature of this user, then the KGC
necessarily leaves evidence of his bad behavior; hence, such an action can be
easily detected, as the KGC is the only entity having that capability. Note
that this scenario is equivalent to a CA forging a certificate in a traditional
PKI system: the existence of two valid certificates for a single identity would
imply the CA behaved maliciously.

The efficiency of an HCLS scheme is mainly dominated by the Sign and
Verify algorithms. In our scheme, the computational cost to generate a
signature is constant. A signer has to compute 2 scalar multiplication op-
erations in G1, 2 MapToPoint hash operations and 2 addition operations
in G1, if pre-computation is considered. To verify a signature using the
Verify algorithm, the computational cost has constant complexity which is
(n+4)te+(n+3)tH +(n+2)tmul, where te is the time to compute a pairing
operation, tH is the time to compute a MapToPoint hash operation, and
tmul is the time to compute a multiplication operation in G2. One may
note that the pairing operation is the most time-consuming one. In our
scheme, the Sign algorithm requires no pairing operation. As to the Verify
algorithm, a verifier needs to compute n+4 (usually n is very small) pairing
operations to verify the validity of a signature. However, as remarked in [8],
when computing multiple pairings in a product, the cost incurred by adding
each extra pairing is significantly less than the cost of the first pairing. The
reason is that the sequence of doublings in Miller’s algorithm [22] can be
amortized over all the pairings in a given product, in a very similar way
to the multi-exponentiation algorithm. According to [13], the cost of each
additional pairing relative to the cost of one single pairing is between 0.1
and 0.6, depending on the pairing used. If we consider computing multiple
pairings in a product, the time cost to verify a signature can be reduced to
((n+ 2)ρ+ 2)te + (n+ 3)tH + (n+ 2)tmul, where ρ is an acceleration factor.
If the Tate Pairing is chosen, ρ is about 0.5.

Key revocation is also a concern that needs to be addressed for HCLS
schemes to be deployable in the real world. In practice, users’ public keys
may become invalid after a period of use due to various reasons, e.g., if they
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were occasionally compromised, or the users forget the corresponding secret
keys. Hence, we suggest users to renew their keys periodically. For instance,
their public keys can contain information on their validity period. This is an
easy method to realize revocation of public keys in HCLC systems. We note
that a similar approach has been employed in IBC and HIBC systems [6].
One may also realize more versatile revocation mechanisms by modifying
those identity revocation approaches in IBC [4] and HIBC systems [14].

4. Security Analysis

Theorem 1. If there exists a Type I adversary who has an advantage ε in
forging a signature of our HCLS scheme in an attack modeled by the Game I
of Section 2.2, within a time span τ for a security parameter λ; and who can
make at most qH1 (resp. qH2 , qH3 , qH4 , qL, qPK , qPPK , qSK , qPKR and qS)
times H1 (resp. H2, H3, H4, Lower-Level-Setup Oracle, Public-Key Oracle,
Partial-Private-Key Oracle, Secret-Key Oracle, Public-Key-Replacement Oracle
and Sign Oracle) queries, then the CDH problem in G1 can be solved within
time τ+O(qH1 +qH2 +qH3 +qH4 +qL+qPK +max{n}qPPK +max{n}qS)τG1

and with probability

ε′ ≥ (1− 3

qPPK + qS + 3
)qPPK+qS (

3

qPPK + qS + 3
)3ε,

where τG1 is the time to compute a scalar multiplication in G1.

Proof. Let C be a CDH challenger, AI be a Type I adversary who can break
the proposed HCLS scheme with probability ε in time τ under an adaptive
chosen-message attack. Suppose that C is given an instance (P, aP, bP ) of the
CDH problem in G1. We show how C can use AI to solve the CDH problem,
i.e., to compute abP . We notice that, in the following proof, essentially, the
solution of the CDH problem is the partial private key of a KGC at level
1. During the simulation we will embed aP into P0 and bP into Q∗1, where
Q∗1 = H1(ID

∗
0, ID

∗
1, P

∗
0 , P

∗
1 ) and (ID∗0, ID

∗
1) is the identifying information

of the KGC at level 1 and (P ∗0 , P
∗
1 ) is the corresponding public key list.

Phase I-1 : Firstly, C sets P0 = aP , params = (q,G1,G2, e, P, P0, H1, H2, H3, H4,
ID0,M) in which the rest of parameters are generated as in the real scheme.
Then C forwards params to AI . In the sequel, we treat H1, H2, H3 and H4

as random oracles which are controlled by C. For all random oracles, if the
same query has been queried before, then for consistency the same answer
will be returned.
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Phase I-2 : C answers AI ’s queries as follows:

H1 Oracle queries: C maintains an initially empty list H list
1 . On input

(ID0, ..., IDn, P0, ..., Pn) in which n ≥ 1, C picks a random αn ∈ Z∗q and
simulates the random oracle H1 as follows:

• If n = 1, flip a coin coinnH1
∈ {0, 1} that yields 1 with probability δ

and 0 with probability 1− δ.

– If coinnH1
= 0, compute Qn = αnP . Return Qn as the answer and

add (ID0, IDn, P0, Pn, αn, Qn, coin
n
H1

) to H list
1 .

– Else, compute Qn = αnbP . Return Qn as the answer and add
(ID0, IDn, P0, Pn, αn, Qn, coin

n
H1

) to H list
1 .

• Else if n 6= 1, set coinnH1
= 0, compute Qn = αnP . Return Qn as the

answer and add (ID0, ...IDn, P0, ..., Pn, αn, Qn, coin
n
H1

) to H list
1 .

H2 Oracle queries: C keeps an initially empty list H list
2 . On input (ID0, ...,

IDn, P0, ..., Pn), C first submits (ID0, ID1, P0, P1) to the H1 Oracle and re-
trieves the tuple (ID0, ID1, P0, P1, α1, Q1, coin

1
H1

) in H list
1 . Then C does the

following:

• If coin1H1
= 1, randomly select βi ∈ Z∗q , flip a coin coinH2 ∈ {0, 1} that

yields 1 with probability δ and 0 with probability 1− δ

– If coinH2 = 0, set E = βaP . Add (ID0, ..., IDn, P0, ..., Pn, β, E, coinH2)
to H list

2 and return E as the answer.

– Else if coinH2 = 1, compute E = βP . Add (ID0, ..., IDn, P0, ..., Pn, β, E,
coinH2) to H list

2 and return E as the answer.

• Else coin1H1
= 0, set coinH2 = 0. Randomly select β ∈ Z∗q , compute

E = βP . Return E as the answer and add (ID0, ...IDn, P0, ..., Pn, β, E, coinH2)
to H list

2 .

H3 Oracle queries: C keeps an initially empty listH list
3 . On input (ID0, ..., IDn,

P0, ..., Pn,m), C selects a random γ ∈ Z∗q and computes F = γP . C adds

(ID0, ..., IDn, P0, ..., Pn,m, γ, F ) to H list
3 and responds with F .

H4 Oracle queries: C keeps an initially empty listH list
4 . On input (ID0, ..., IDn,

P0, ..., Pn,m), C first submits (ID0, ..., IDn, P0, ..., Pn) to the H2 Oracle, and
retrieves the tuple (ID0, ..., IDn, P0, ..., Pn, β, E, coinH2) in H list

2 . Then C
does the following:
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• If coinH2 = 1, randomly select π ∈ Z∗q , and flip a coin coinH4 ∈ {0, 1}
that yields 1 with probability δ and 0 with probability 1− δ

– If coinH4 = 0, set T = πaP . Add (ID0, ..., IDn, P0, ..., Pn,m,
π, T, coinH4) to H list

4 and respond with T .

– Else if coinH4 = 1, set T = πP . Add (ID0, ..., IDn, P0, ..., Pn,
m, π, T, coinH4) to H list

4 and return T as the answer.

• Else, set coinH4 = 0. Select π ∈ Z∗q at random and compute T = πP .

Add (ID0, ..., IDn, P0, ..., Pn, m, π, T, coinH4) to H list
4 and return T as

the answer.

Lower-Level-Setup Oracle queries: C keeps an initially empty list KGC list.
On input a KGC’s identifying information (ID0, ..., IDn), if (ID0, ..., IDn)
already appears inKGC list in a tuple (ID0, ..., IDn, ...; s0, ..., sn, ...;P0, ..., Pn, ...),
C responds with (sn, Pn) (here we define s0 = φ). Else C does the following:

• If n = 1, select s1 ∈ Z∗q and compute P1 = s1P . Add (ID0, ID1, s0, s1, P0, P1)

to KGC list and return (s1, P1) as the answer.

• Else, recover (ID0, ..., IDn−1; s0, ..., sn−1;P0, ..., Pn−1) from KGC list,
and compute Pn = snP for a randomly chosen sn ∈ Z∗q . Remove

(ID0, ..., IDn−1; s0, ..., sn−1;P0, ..., Pn−1) fromKGC list. Add (ID0, ..., IDn; s0, ..., sn;
P0, ..., Pn) to KGC list and return (sn, Pn) as the answer.

Public-Key Oracle queries: C maintains an initially empty list Userlist. On
input (ID0, ..., IDn), if (ID0, ..., IDn, Pn, sn) exists in Userlist, return Pn as
the answer. Else, randomly select sn ∈ Z∗q , compute Pn = snP , return Pn
as the answer and add (ID0, ..., IDn, Pn, sn) to Userlist.

Partial-Private-Key Oracle queries: On input (ID0, ..., IDn, P0, ..., Pn), C first
does the following two steps:

1. For 1 ≤ i ≤ n, submit (ID0, ..., IDi, P0, ..., Pi) to the H1 Oracle to
generate the tuple (ID0, ..., IDi, P0, ..., Pi, αi, Qi, coin

i
H1

).

2. Submit (ID0, ..., IDn, P0, ..., Pn) to the H2 Oracle to obtain the tuple
(ID0, ..., IDn, P0, ..., Pn, β, E, coinH2) in H list

2 .

Then C does the following:

• If coin1H1
= 0, for a randomly chosen value x ∈ Z∗q , compute Rn = xP ,

Dn =
∑n

i=1 αiPi−1 + xE and return (Rn, Dn) as the answer.

17



• Else if coin1H1
= 1 and coinH2 = 0, randomly select x ∈ Z∗q , set

Rn = xP − β−1α1bP , Dn =
∑n

i=2 αiPi−1 + xE, and return (Rn, Dn)
as the answer.

• Else abort.

In the above setting, AI can get the partial private key of any user except
that of the target user at the target position with the target public keys.
Secret-Value Oracle queries: On input (ID0, ..., IDn), C submits (ID0, ..., IDn)
to the Public-Key Oracle and recovers the tuple (ID0, ..., IDn, Pn, sn) from
Userlist. C returns sn as the answer.

Public-Key-Replacement Oracle queries: On input (ID0, ..., IDn, P
′
n), this or-

acle runs as follows.

• If IDn is the identity of a user, do the following:

1. Submit (ID0, ..., IDn) to the Public-Key Oracle.

2. Recover (ID0, ..., IDn, Pn, sn) from Userlist and set Pn = P ′n.

• Else if IDn is the identity of a KGC, do the following:

1. Submit (ID0, ..., IDn) to the Lower-Level-Setup Oracle.

2. Recover fromKGC list all the tuples (ID0, ..., IDn, ...; s0, ..., sn, ...;P0, ...,
Pn, ...) which contain ID0, ..., IDn. Set Pn = P ′n in all the tuples.

Sign Oracle queries: On input (ID0, ..., IDn, P0, ..., Pn,m), C first does the
following:

1. For 1 ≤ i ≤ n, submit (ID0, ..., IDi, P0, ..., Pi) to the H1 Oracle and
recover (ID0, ..., IDi, P0, ..., Pi, αi, Qi, coin

i
H1

) from H list
1 .

2. Submit (ID0, ..., IDn, P0, ..., Pn) to the H2 Oracle and recover (ID0, ...,
IDn, P0, ..., Pn, β, E, coinH2) from H list

2 .

3. Submit (ID0, ..., IDn, P0, ..., Pn,m) to both H3 Oracle and H4 Oracle,
and recover (ID0, ..., IDn, P0, ..., Pn,m, γ, F ) fromH list

3 , (ID0, ..., IDn,
P0, ..., Pn,m, π, T, coinH4) from H list

4 .

Then C generates the signature by the following procedure:

• If coin1H1
= 0, generate the signature as follows:

1. Randomly select R,U ∈ G1.

2. Compute V = βR+ πU + γPn +
∑n

i=1 αiPi−1.

3. Output (R,U, V ).
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We show that (R,U, V ) is a valid signature onm under (ID0, ..., IDn, P0, ..., Pn).
From the simulations, E = βP , F = γP , T = πP , Qi = αiP for
1 ≤ i ≤ n, we have that

e(V, P ) = e(R,E)e(U, T )e(Pn, F )

n∏
i=1

e(Pi−1, Qi).

Hence, (R,U, V ) is a valid signature.

• Else if coin1H1
= 1 and coinH2 = 0, generate the signature as follows:

1. Randomly select U ∈ G1, x ∈ Z∗q .
2. Set R = xP − β−1α1bP .

3. Compute V = xE + πU + γPn +
∑n

i=2 αiPi−1.

4. Output (R,U, V ). It can be shown to be a valid signature by
direct verification.

From the simulations, E = βaP , F = γP , T = πP , Q1 = α1bP ,
Qi = αiP for 2 ≤ i ≤ n, we have that

e(V, P )

= e(xE + πU + γPn +

n∑
i=2

αiPi−1, P )

= e(xP,E)e(U, πP )e(Pn, γP )e(P0, Q1)
−1e(P0, Q1)

n∏
i=2

e(Pi−1, αiP )

= e(R+ β−1α1bP,E)e(P0, Q1)
−1e(U, T )e(Pn, F )

n∏
i=1

e(Pi−1, Qi)

= e(R,E)e(U, T )e(Pn, F )

n∏
i=1

e(Pi−1, Qi).

• Else if coin1H1
= 1, coinH2 = 1 and coinH4 = 0, do the following:

1. Randomly select R ∈ G1, y ∈ Z∗q .
2. Set U = yP − π−1α1bP .

3. Compute V = βR+ yT + γPn +
∑n

i=2 αiPi−1.

4. Output (R,U, V ). It can be shown to be a valid signature by
direct verification.
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From the simulations, E = βP , F = γP , T = πaP , Q1 = α1bP ,
Qi = αiP for 2 ≤ i ≤ n, we have that

e(V, P )

= e(βR+ yT + γPn +

n∑
i=2

αiPi−1, P )

= e(R, βP )e(yP, T )e(Pn, γP )e(P0, Q1)
−1e(P0, Q1)

n∏
i=2

e(Pi−1, αiP )

= e(R,E)e(U + π−1α1bP, T )e(P0, Q1)
−1e(Pn, F )

n∏
i=1

e(Pi−1, Qi)

= e(R,E)e(U, T )e(Pn, F )

n∏
i=1

e(Pi−1, Qi).

• Else abort.

Phase I-3 : In this phase, AI outputs a tuple (m∗, σ∗, ID∗0, ..., ID
∗
n, P

∗
0 ,

..., P ∗n), where σ∗ = (R∗, U∗, V ∗), ID∗0 = ID0 and P ∗0 = P0. It requires
that σ∗ be a valid signature on m∗ under (ID∗0, ..., ID

∗
n, P

∗
0 , ..., P

∗
n).

C aborts if one of the following two events does not happen:

1. Event 1 : For 1 ≤ i ≤ n, (ID∗0, ..., ID
∗
i , P

∗
0 , ..., P

∗
i , α

∗
i , Q

∗
i , coin

i∗
H1

) is in

H list
1 . The tuple (ID∗0, ..., ID

∗
n, P

∗
0 , ..., P

∗
n , β

∗, E∗, coin∗H2
) is in H list

2 ,

(ID∗0, ..., ID
∗
n, P

∗
0 , ..., P

∗
n ,m

∗, γ∗, F ∗) is inH list
3 , and (ID∗0, ..., ID

∗
n, P

∗
0 , ..., P

∗
n ,m

∗,
π∗, T ∗, coin∗H4

) is in H list
4 .

2. Event 2 : coin1
∗
H1

= coin∗H2
= coin∗H4

= 1.

If both events happen, from our simulations, we have P0 = aP,Q∗1 =
α∗1bP,E

∗ = β∗P, F ∗ = γ∗P, T ∗ = π∗P and for 2 ≤ i ≤ n, Q∗i = α∗iP . Since
the public key P0 of the root KGC is not allowed to be replaced, we can
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denote P ∗0 = P0. Note that

e(V ∗, P )

= e(R∗, E∗)e(U∗, T ∗)e(P ∗n , F
∗)

n∏
i=1

e(P ∗i−1, Q
∗
i )

= e(R∗, β∗P )e(U∗, π∗P )e(P ∗n , γ
∗P )e(P0, α

∗
1bP )

n∏
i=2

e(P ∗i−1, α
∗
iP )

= e(β∗R∗, P )e(π∗U∗, P )e(γ∗P ∗n , P )e(aP, α∗1bP )e(
n∑
i=2

α∗iP
∗
i−1, P ).

We have

abP = α∗1
−1(V ∗ − (β∗R∗ + π∗U∗ + γ∗P ∗n +

n∑
i=2

α∗iP
∗
i−1)),

which is the solution of the CDH problem.
To complete the proof, we shall show that C solves the given instance of

the CDH problem with probability at least ε′. First, we analyze the three
events needed for C to succeed:

• E1: C does not abort as a result of any of AI ’s Partial-Private-Key
Oracle and Sign Oracle queries.

• E2: σ∗ is a valid signature on m∗ under (ID∗0, ..., ID
∗
n, P

∗
0 , ..., P

∗
n).

• E3: Both Event 1 and Event 2 happen.

C succeeds if all of these events happen. Hence, we have that

Pr[C succeeds]= Pr[E1 ∧ E2 ∧ E3] = Pr[E1] Pr[E2|E1] Pr[E3|E1 ∧ E2].

Claim 1. The probability that C does not abort as a result of AI ’s Partial-
Private-Key Oracle and Sign Oracle queries is at least (1 − δ)qPPK+qS , and,
formally, we have that Pr[E1] ≥ (1− δ)qPPK+qS .
Proof. Define ¬PPKabort to be the event “C does not abort as a result of
AI ’s Partial-Private-Key Oracle queries” and ¬Sabort be the event “C does
not abort as a result of AI ’s Sign Oracle queries”.

For a Partial-Private-Key Oracle query on (ID0, ..., IDn, P0, ..., Pn), C will
abort iff both coin1H1

= 1 and coinH2 = 1 happen. Since AI can make at
most qPPK times Partial-Private-Key Oracle queries, we have

Pr[¬PPKabort] ≥ (1− δ)qPPK
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For a Sign Oracle query on (ID0, ..., IDn, P0, ..., Pn,m), C will abort iff
coin1H1

= coinH2 = coinH4 = 1. Since AI can make at most qS times Sign
Oracle queries, we have

Pr[¬Sabort] ≥ (1− δ)qS

Hence, we have Pr[E1] ≥ (1− δ)qPPK+qS . �
Claim 2. Pr[E2|E1] ≥ ε.
Proof. If Algorithm C does not abort as a result of AI ’s Partial-Private-Key
Oracle and Sign Oracle queries, then Algorithm AI ’s view is identical to its
view in the real attack. Note that AI is an attacker which can break the
proposed scheme with probability ε (in time τ). Hence, Pr[E2|E1] ≥ ε. �

Claim 3. The probability that C does not abort after AI outputting a valid
forgery is at least δ3. Formally, Pr[E3|E1 ∧ E2] ≥ δ3.
Proof. If events E1 and E2 have occurred, C will abort unless Event 1
or Event 2 happen. If Event 1 happens, that means C generates a valid
message-signature pair (m∗, σ∗) under (ID∗0, ..., ID

∗
n, P

∗
0 , ..., P

∗
n) without query-

ing the corresponding hash functions. This probability is negligible. On the
other hand, Pr[Event 2] = Pr[coin1

∗
H1

= coin∗H2
= coin∗H4

= 1] ≥ δ3. There-
fore, Pr[E3|E1 ∧ E2] ≥ δ3. �

From Claims 1, 2 and 3, we have that

ε′ = Pr[C succeeds] = Pr[E1 ∧ E2 ∧ E3] ≥ (1− δ)qPPK+qSδ3ε.

When δ = 3
qPPK+qS+3 , (1− δ)qPPK+qSδ3ε has the maximum value. Hence, C

can set δ = 3
qPPK+qS+3 to maximize the success probability

ε′ ≥ (1− 3

qPPK + qS + 3
)qPPK+qS (

3

qPPK + qS + 3
)3ε.

This completes the proof. �

Theorem 2. If there exists a Type II adversary who has an advantage ε in
forging a signature of our HCLS scheme in an attack modeled by the Game II
of Section 2.2, within a time span τ for a security parameter λ; and who can
make at most qH1 (resp. qH2 , qH3 , qH4 , qL, qPK , qPPK , qSK , qRK , qPKR and
qS) times H1 (resp. H2, H3, H4, Lower-Level-Setup Oracle, Public-Key Ora-
cle, Partial-Private-Key Oracle, Secret-Key Oracle, Reveal-KGC Oracle, Public-
Key-Replacement Oracle and Sign Oracle) queries, then the CDH problem in
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G1 can be solved within time τ + O(qH1 + qH2 + qH3 + qH4 + qL + qPK +
max{n}(qPPK + qRK + qS))τG1 and with probability

ε′ ≥ (1− 2

qSK + qPKR + qS + 2
)qSK+qPKR+qS ·

(
2

qSK + qPKR + qS + 2
)2ε,

where τG1 is the time to compute a scalar multiplication in G1.

Proof. Let C be a CDH challenger who is given an instance (P, aP, bP ) of the
CDH problem in G1 and wants to compute abP . Let AII be a forger who can
break the proposed HCLS scheme under an adaptive chosen-message attack.
We show how C can use AII to solve the CDH problem, i.e., to compute
abP for unknown a, b ∈ Z∗q . We notice that, to forge a valid signature, AII
needs to know x∗nF

∗, where x∗n is the secret value of the target user and
F ∗ = H3(ID

∗
0, ..., ID

∗
n, P

∗
0 , ..., P

∗
n ,m

∗). Hence, in the following proof, we
will embed aP and bP into F ∗ and P ∗n , respectively.

Phase II-1 : Firstly, C selects s0 ∈ Z∗q , sets P0 = s0P , then selects the system
parameters params = (q,G1,G2, e, P, P0, H1, H2, H3, H4, ID0,M), and then
gives s0 and params to AII . In the sequel, we treat H1, H2, H3 and H4 as
random oracles which are controlled by C.

Phase II-2 : C simulates the random oracles as well as the oracles defined in
our Game II as follows:

H1 Oracle queries: C maintains an initially empty list H list
1 . On input

(ID0, ..., IDn, P0, ..., Pn), the same answer from H list
1 will be given if the

request has been asked before. Otherwise, C picks a random αn ∈ Z∗q , com-
putesQn = αnP , returnsQn as the answer and adds (ID0, ..., IDn, P0, ..., Pn, αn, Qn)
to H list

1 .

H2 Oracle queries: C keeps an initially empty list H list
2 . On input (ID0, ...,

IDn, P0, ..., Pn), the same answer from H list
2 will be given if the request has

been asked before. Otherwise, C randomly selects β ∈ Z∗q , sets E = βP ,

returns E as the answer and adds (ID0, ..., IDn, P0, ..., Pn, β, E) to H list
2 .

H3 Oracle queries: C keeps an initially empty list H list
3 . On input (ID0, ...,

IDn, P0, ..., Pn,m), the same answer from H list
3 will be given if the request

has been asked before. Otherwise, C randomly selects γ ∈ Z∗q , flips a coin
coinH3 ∈ {0, 1} that yields 1 with probability δ and 0 with probability
1 − δ. If coinH3 = 0, C computes F = γP ; else sets F = γaP . Finally, C
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adds (ID0, ...IDn, P0, ..., Pn,m, π, F, coinH3) to H list
3 and returns F as the

answer.

H4 Oracle queries: C keeps an initially empty listH list
4 . On input (ID0, ..., IDn,

P0, ..., Pn,m), the same answer from H list
4 will be given if the request has

been asked before. Otherwise, C randomly selects π ∈ Z∗q and computes

T = πP . Finally, C adds (ID0, ..., IDn, P0, ..., Pn,m, π, T ) to H list
4 and re-

turns T as the answer.

Lower-Level-Setup Oracle queries: C keeps an initially empty list KGC list.
On input a KGC’s identifying information (ID0, ..., IDn), C does the follow-
ing:

• If (ID0, ..., IDn) already appears inKGC list in a tuple (ID0, ..., IDn, ...; s0,
..., sn, ...;P0, ..., Pn, ...), respond with (sn, Pn).

• Else if n = 1, select s1 ∈ Z∗q , compute P1 = s1P , add (ID0, ID1; s0, s1;P0, P1)

to KGC list and return (s1, P1) as the answer.

• Else, recover (ID0, ..., IDn−1; s0, ..., sn−1;P0, ..., Pn−1) from KGC list

at first, then randomly select sn ∈ Z∗q , compute Pn = snP , add

(ID0, ..., IDn; s0, ..., sn;P0, ..., Pn) toKGC list, remove (ID0, ..., IDn−1;
s0, ..., sn−1;P0, ..., Pn−1) from KGC list and respond with (sn, Pn).

Public-Key Oracle queries: C keeps an initially empty list Userlist. On input
(ID0, ..., IDn), C does the following:

• If (ID0, ..., IDn, Pn, sn, coinPK) is in Userlist, return Pn as the answer.

• Else flip a coin coinPK ∈ {0, 1} that yields 1 with probability δ and 0
with probability 1− δ, randomly select sn ∈ Z∗q and do the following:

– If coinPK = 0, compute Pn = snP and add (ID0, ..., IDn, Pn, sn,
coinPK) to Userlist and return Pn as the answer.

– Else, set Pn = snbP , return Pn as the answer and add (ID0, ..., IDn,
Pn, sn, coinPK) to Userlist.

Partial-Private-Key Oracle queries: On input (ID0, ..., IDn, P0, ..., Pn), C does
the following:

1. For 1 ≤ i ≤ n, submit (ID0, ..., IDi, P0, ..., Pi) to the H1 Oracle to
generate the tuple (ID0, ...IDi, P0, ..., Pi, αi, Qi).

2. Submit (ID0, ..., IDn, P0, ..., Pn) to the H2 Oracle and later find the
tuple (ID0, ..., IDn, P0, ..., Pn, β, E) in H list

2 .
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3. Randomly select x ∈ Z∗q , set Rn = xP , Dn =
∑n

i=1 αiPi−1 + xE, and
return (Rn, Dn) as the answer.

Secret-Value Oracle queries: On input (ID0, ..., IDn), C first submits (ID0,
..., IDn) to the Public-Key Oracle then recovers the tuple (ID0, ..., IDn, Pn,
sn, coinPK) from Userlist. If coinPK = 0, C returns sn as the answer; else
C aborts.

Public-Key-Replacement Oracle queries: On input (ID0, ..., IDn, P
′
n), this or-

acle does the following:

• If IDn is the identity of a user, do the following:

1. Submit (ID0, ..., IDn) to the Public-Key Oracle.

2. Recover (ID0, ..., IDn, Pn, sn, coinPK) from Userlist. If coinPK =
1 and P ′n 6= snP , abort; otherwise, set Pn = P ′n.

• Else IDn is the identity of a KGC, so do the following:

1. Submit (ID0, ..., IDn) to the Lower-Level-Setup Oracle .

2. Recover fromKGC list all the tuples (ID0, ..., IDn, ...; s0, ..., sn, ...;P0, ...,
Pn, ...) which contain ID0, ..., IDn. Set Pn = P ′n in all the tuples.

Reveal-KGC Oracle: On input (ID0, ..., IDn, P0, ..., Pn), C does the following:

1. For 1 ≤ i ≤ n, first submit (ID0, ..., IDi, P0, ..., Pi) to the H1 Oracle,
then recover (ID0, ..., IDi, P0, ..., Pi, αi, Qi) from H list

1 .

2. Compute Dn =
∑n

i=1 αiPi−1.

3. Output Dn.

Sign Oracle queries: On input (ID0, ..., IDn, P0, ..., Pn,m), C first does the
following:

1. For 1 ≤ i ≤ n, submit (ID0, ..., IDi, P0, ..., Pi) to the H1 Oracle and
recover (ID0, ..., IDi, P0, ..., Pi, αi, Qi) from H list

1 .

2. Submit (ID0, ..., IDn, P0, ..., Pn) to the H2 Oracle and recover (ID0, ...,
IDn, P0, ..., Pn, β, E) from H list

2 .

3. Submit (ID0, ..., IDn, P0, ..., Pn,m) to both H3 Oracle and H4 Ora-
cle, and recover (ID0, ..., IDn, P0, ..., Pn,m, γ, F, coinH3) from H list

3 ,
(ID0, ..., IDn, P0, ..., Pn,m, π, T ) from H list

4 .

C then generates the signature as follows:

• If coinH3 = 0, generate the signature as follows:
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1. Randomly select R,U ∈ G1.
2. Compute V = βR+ πU + γPn +

∑n
i=1 αiPi−1.

3. Output (R,U, V ).

From the simulations, E = βP , F = γP , T = πP , Qi = αiP for
1 ≤ i ≤ n, we have that

e(V, P )

= e(βR+ πU + γPn +

n∑
i=1

αiPi−1, P )

= e(R, βP )e(U, πP )e(Pn, γP )

n∏
i=1

e(Pi−1, αiP )

= e(R,E)e(U, T )e(Pn, F )

n∏
i=1

e(Pi−1, Qi).

• Else abort.

Phase II-3 : In this phase, AII outputs a tuple (m∗, σ∗, ID∗0, ..., ID
∗
n, P

∗
0 , ..., P

∗
n),

where σ∗ = (R∗, U∗, V ∗). It requires that σ∗ is a valid signature on m∗ under
(ID∗0, ..., ID

∗
n, P

∗
0 , ..., P

∗
n).

C aborts if any of the following events is not satisfied:

1. Event 3 : For 1 ≤ i ≤ n, (ID∗0, ..., ID
∗
i , P

∗
0 , ..., P

∗
i , α

∗
i , Q

∗
i ) is in H list

1 ,
(ID∗0, ..., ID

∗
n, P

∗
0 , ..., P

∗
n , β

∗, E∗) is in H list
2 , (ID∗0, ..., ID

∗
n, P

∗
0 , ..., P

∗
n ,

m∗, γ∗, F ∗, coin∗H3
) is inH list

3 , and (ID∗0, ..., ID
∗
n, P

∗
0 , ..., P

∗
n , m∗, π∗, T ∗)

is in H list
4 .

2. Event 4 : coin∗H3
= coin∗PK = 1, where coin∗PK is in the tuple (ID∗0, ..., ID

∗
n,

P ∗0 , ..., P
∗
n ,m

∗, γ∗, F ∗, coin∗H3
) in Userlist.

If C does not abort, we have E∗ = β∗P, F ∗ = γ∗aP, T ∗ = π∗P and for
1 ≤ i ≤ n, Q∗i = α∗iP , P ∗n = s∗nbP . We have

e(V ∗, P )

= e(R∗, E∗)e(U∗, T ∗)e(P ∗n , F
∗)

n∏
i=1

e(P ∗i−1, Q
∗
i )

= e(R∗, β∗P )e(U∗, π∗P )e(s∗nbP, γ
∗aP )

n∏
i=1

e(P ∗i−1, α
∗
iP )

= e(β∗R∗, P )e(π∗U∗, P )e(s∗nbP, γ
∗aP )e(

n∑
i=1

α∗iP
∗
i−1, P ).
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C outputs

abP = (s∗nγ
∗)−1(V ∗ − (β∗R∗ + π∗U∗ +

n∑
i=1

α∗iP
∗
i−1))

as the solution of the CDH problem.
To complete the proof, we shall show that C solves the given instance of

CDH problem with probability at least ε′. First, we analyze the three events
needed for C to succeed:

• E4: C does not abort as a result of any of AII ’s Secret-Key Oracle,
Public-Key-Replacement Oracle and Sign Oracle queries.

• E5: σ∗ is a valid signature on m∗ under (ID∗0, ..., ID
∗
n, P

∗
0 , ..., P

∗
n).

• E6: Both Event 3 and Event 4 happen.

C succeeds if all of these events happen. Hence, we have that

ε′ = Pr[E4 ∧ E5 ∧ E6] = Pr[E4] Pr[E5|E4] Pr[E6|E4 ∧ E5].

Claim 4. The probability that C does not abort as a result of AII ’s Secret-
Key Oracle, Public-Key-Replacement Oracle and Sign Oracle queries is at least
(1− δ)qSK+qPKR+qS . Formally, we have Pr[E4] ≥ (1− δ)qSK+qPKR+qS .
Proof. For a Secret-Key Oracle query, C will abort iff coinPK = 1 happens.
It is easy to see that the probability C does not abort for a Secret-Key Oracle
query ≥ 1 − δ. Since AII can make at most qSK times Secret-Key Oracle
queries, the probability that C does not abort as a result of AII ’s Secret-Key
Oracle queries is at least (1− δ)qSK .

For a Public-Key-Replacement Oracle query, C will abort iff coinPK = 1
happens. Hence the probability that C does not abort for a Public-Key-
Replacement Oracle query is ≥ 1 − δ. Since AII can make at most qPKR
times Public-Key-Replacement Oracle queries, the probability that C does
not abort as a result of AII ’s Public-Key-Replacement Oracle queries is at
least (1− δ)qPKR .

For a Sign Oracle query, C will abort iff coinH3 = 1. It is easy to see that
the probability that C does not abort for a Sign Oracle query is ≥ (1 − δ).
Since AII can make at most qS times Sign Oracle queries, the probability
that C does not abort as a result of AII ’s Sign Oracle queries is at least
(1− δ)qS .

Hence, we have

Pr[E4] ≥ (1− δ)qSK+qPKR+qS .
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�
Claim 5. Pr[E5|E4] ≥ ε.
Proof. If Algorithm C does not abort as a result of AII ’s Secret-Key Oracle,
Public-Key-Replacement Oracle and Sign Oracle queries then Algorithm AII ’s
view is identical to its view in the real attack. Hence, Pr[E5|E4] ≥ ε. �

Claim 6. The probability that C does not abort after AII outputting a
valid forgery is at least δ2. Formally, we have Pr[E6|E4 ∧ E5] ≥ δ2.
Proof. If events E4 and E5 have occurred, C will abort unless Event 3
or Event 4 happen. If Event 3 happens, that means C generates a valid
message-signature pair (m∗, σ∗) under (ID∗0, ..., ID

∗
n, P

∗
0 , ..., P

∗
n) without query-

ing the corresponding hash functions. This probability is negligible. On the
other hand, Pr[Event 4] = Pr[coin∗H3

= coin∗PK = 1] ≥ δ2. Therefore,
Pr[E6|E4 ∧ E5] ≥ δ2. �

Altogether, we have

ε′ = Pr[E4 ∧ E5 ∧ E6] ≥ (1− δ)qSK+qPKR+qSδ2ε.

When δ = 2
qSK+qPKR+qS+2 , we have

ε′ ≥ (1− 2

qSK + qPKR + qS + 2
)qSK+qPKR+qS ·

(
2

qSK + qPKR + qS + 2
)2ε,

This completes the proof. �

Theorem 3. Our scheme is a secure HCLS scheme.

Proof. An HCLS scheme is secure if it is secure against Type I and II
adversaries. Hence, this theorem follows directly from Theorem 1 and 2.

5. Discussion

In this section, we discuss generic constructions of HCLSs and a short
HCLS scheme.

5.1. Generic Construction

We distinguish our work from potential generic constructions of HCLS
schemes. In [25], Yum and Lee presented a generic way to construct a cer-
tificateless signature scheme. Subsequently, Hu et al. [16] pointed out that
the Yum-Lee construction is flawed and proposed a new one. It seems at
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first glance that Hu et al.’s methods can also be used to obtain a generic
construction of HCLSs by combination of hierarchical identity-based sig-
nature and normal public key signature. Roughly speaking, in this generic
construction, a signer firstly generates a signature σ on the message m using
a normal public key signature scheme, then the signer generates a signature
σ′ on m and σ using an hierarchical identity-based signature scheme. Unfor-
tunately, for a construction of this kind, the scheme has the weakness of how
to detect dishonest behavior and how to identify a malicious KGC. In other
words, if a malicious (root or lower-level) KGC forges a user’s signature, any
KGC may deny its dishonest behavior. On the contrary, our scheme does
not suffer from this weakness.

5.2. Short HCLS Scheme

It is interesting to achieve short HCLS schemes. HCLC was first studied
in [1], in which a hierarchical certificateless encryption scheme was instanti-
ated. It seems that this hierarchical certificateless encryption scheme implies
an HCLS scheme with short signature output. The following HCLS scheme
is derived from the hierarchical certificateless encryption scheme in [1].

• Root-Setup: On input 1λ, this algorithm runs as follows:

1. Choose G1,G2, e as defined in Section 3.1.

2. Choose a random generator P ∈ G1.

3. Select a root private key s0 ∈ Z∗q at random and set P0 = s0P as
the public key of the root KGC K0.

4. Choose cryptographic hash functions H1, H2 : {0, 1}∗ −→ G1.

The system parameters are params = (G1,G2, e, P, P0, H1, H2, ID0,M),
where ID0 is the identity of K0 andM = {0, 1}∗ is the message space.

• Lower-Level-Setup: The same as that in Section 3.2.

• Set-Secret-Value: The same as that in Section 3.2.

• Set-Public-Key: The same as that in Section 3.2.

• Partial-Private-Key-Extract: On input Un’s identifying information (ID0, ...,
IDn) and the corresponding public key list (P0, ..., Pn), Kn−1 computes
the partial private key for Un as follows:

1. Compute Qn = H1(ID0, ..., IDn, P0, ..., Pn).

2. Compute Dn = Dn−1 + sn−1Qn =
∑t

i=1 si−1Qi.
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3. Output the partial private key Dn.

• Set-Private-Key: On input Un’s secret value sn, partial private key Dn,
identifying information (ID0, ..., IDn) and the public key list (P0, ..., Pn),
Un sets Sn = (sn, Dn) as her private key.

• Sign: Let the signer Un have identifying information (ID0, ..., IDn),
public keys (P0, ..., Pn) and private key Sn = (sn, Dn). To sign a
message m ∈M, Un uses the private key Sn and performs the following
steps of which the first four can be pre-computed:

1. Compute Qi = H1(ID0, ..., IDi, P0, ..., Pi) for 1 ≤ i ≤ n.

2. Compute F = H2(ID0, ..., IDn, P0, ..., Pn,m).

3. Compute σ = Dn + snF .

4. Output σ as the signature on m.

• Verify: To verify a signature σ on messagem under (ID0, ..., IDn, P0, ..., Pn),
the verifier performs the following steps:

1. Compute Qi = H1(ID0, ..., IDi, P0, ..., Pi) for 1 ≤ i ≤ n.

2. Compute F = H2(ID0, ..., IDn, P0, ..., Pn,m).

3. Check whether

e(σ, P )
?
= e(Pn, F )

n∏
i=1

e(Pi−1, Qi)

holds with equality. Output true if the equality holds; otherwise,
output false.

The above construction is more efficient than the scheme in Section 3.2
and has short signature size, i.e., a signature only consists of one group
element. However, we remark that the above scheme can only be proven
secure in a weaker security model in which a Type I adversary is a normal
Type I adversary [17]. In fact, when the hierarchical level is 1 (i.e., the
scheme degenerates to the normal CLS), the scheme is exactly the short
signature scheme in [17] that is secure against normal Type I and super Type
II adversaries. We note that a normal Type I adversary is a weaker adversary
than those in the real world. If a CLS scheme is only secure against normal
Type I adversary and a user misuses her private key (e.g., signs a message
with a replaced public key), then a Type I adversary can recover the full
private key of the user. Therefore, it remains an open problem to construct
short HCLS schemes secure against super Type I and II adversaries.
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6. Conclusion

We have introduced hierarchical certificateless signature schemes and
their related security definitions. In our security definitions, we treat Type I
and Type II adversaries as super adversaries. We have proposed a concrete
fully scalable HCLS scheme where the signatures consist of three group
elements. The proposed scheme is provably secure against both types of
super adversaries under the CDH assumption in the random oracle model.
With our scheme, even if an attacker colludes with other users in the system,
he cannot forge a valid HCLS on behalf of his target user; also, if a KGC
forges an HCLS, then this dishonest behavior can be detected. We have
also distinguished our scheme from a possible generic construction and a
construction with short signatures, and shown that our scheme has a higher
security level than the other two constructions.
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