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Abstract

ε-Differential privacy is a property that seeks to characterize privacy in data sets. It
is formulated as a query-response method, and computationally achieved by output
perturbation. Several noise-addition methods to implement such output perturba-
tion have been proposed in the literature. We focus on data-independent noise, that
is, noise whose distribution is constant across data sets. Our goal is to find the opti-
mal data-independent noise distribution to achieve ε-differential privacy. We propose
a general optimality criterion based on the concentration of the probability mass
of the noise distribution around zero, and we show that any noise optimal under
this criterion must be optimal under any other sensible criterion. We also show that
the Laplace distribution, commonly used for noise in ε-differential privacy, is not
optimal, and we build the optimal data-independent noise distribution. We compare
the Laplace and the optimal data-independent noise distributions. For univariate
query functions, both introduce a similar level of distortion; for multivariate query
functions, optimal data-independent noise offers responses with substantially better
data quality.

Key words: Data privacy, Differential privacy, Noise addition, Privacy-preserving
data mining, Statistical disclosure control

1 Introduction

ε-Differential privacy [6,5] is a statistical disclosure control methodology for
queryable databases. A remarkable fact about ε-differential privacy is that,
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unlike other methods, it is not based on the understanding that some specific
output may be disclosive. Instead it seeks to limit the knowledge gain that
any database user may obtain from a response.

The initial formulation of differential privacy only in a query-response setting
was justified by previous results [1,3,4] showing the imposibility of answering a
large number of queries with a bounded error while preserving the utility of the
data. This seemed to preclude using differential privacy for data set releases.
In [2,9] it was shown that those previous results were overpessimistic, which
opened the door to the generation of ε-differentially private data sets [13].
Nonetheless, the initial query-response formulation remains the basic use case
for differential privacy, and the methods developed for such use case can also
be leveraged to generate ε-differentially private data sets.

Computationally, ε-differential privacy is usually achieved by output pertur-
bation; responses are computed on the real data and masked by adding a
random noise. Other methods for attaining ε-differential privacy not based on
directly adding noise to the real query response are, for instance, the expo-
nential mechanism [14], and the sample and aggregate framework [16]. For a
more complete overview of differential privacy and, in particular, of a variety
of methods used to attain it, see [7,8,12].

Several methods to generate the required random noise have been proposed
in the differential privacy literature. We classify them in two categories, ac-
cording to whether the noise distribution takes the original data into account:
data-independent noise and data-dependent noise. Methods based on adding
data-independent noise conform the most basic approach. Laplace noise ad-
dition [6] belongs to this category. Methods based on adding data-dependent
noise are more complex, but usually they lead to less distortion being intro-
duced. Calibration to smooth sensitivity [16] belongs to the data-dependent
noise category. In this paper we focus on the data-independent noise approach,
which is the most frequently used one (and the one that was first proposed).

To maximize the utility of the results provided by ε-differential privacy, the
magnitude of the random noise should be as small as possible. Some criti-
cisms have appeared to the data utility that results from using Laplace noise
addition as the mechanism to obtain ε-differential privacy [15,17]. The ques-
tion of the optimality of Laplace noise addition arises: is it possible to achieve
ε-differential privacy with substantially more data utility using other noise
distributions?

Our goal is to determine the optimal distribution to achieve ε-differential pri-
vacy with data-independent random noise. We will limit our discussion to
absolutely continuous random noise distributions, as they provide the great-
est level of generality. Similar results can also be obtained for discrete random
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noise; however, this type of noise is only applicable in very specific circum-
stances.

By using an optimal noise, the distortion required to achieve a certain level
ε of differential privacy is minimized. This may lead to under-protection if
the disclosure limitation offered by ε-differential privacy is measured by how
much noise is added to the data (as in traditional noise addition for disclosure
control, see [11]), rather than by the theoretical guarantee offered by differen-
tial privacy in terms of ε (see Definition 1 below). In what follows, we assume
that a protection level ε is chosen such that the theoretical guarantee provides
sufficient protection.

Before going into the details of the construction of the optimal data-independent
random noise we briefly introduce some basic concepts about ε-differential
privacy. The following formal definition of ε-differential privacy can be found
in [5].

Definition 1 A randomized function κ gives ε-differential privacy if, for all
data sets D and D′ differing in at most one row (that is, one record), and all
S ⊂ Range(κ) measurable, it holds that

P (κ(D) ∈ S) ≤ eε × P (κ(D′) ∈ S) (1)

The interpretation of the above definition is as follows. Assume that we want
to query the database with a function f : D −→ R

d that maps each of the
data sets to a value in R

d. ε-Differential privacy returns a randomization κf

of f such that the probability of obtaining a given response changes at most
by a factor exp(ε) when adding or removing a record from the database.

The privacy guarantee provided by ε-differential privacy to an individual is
that, no matter whether the record containing the individual’s data is included
in the data set, the responses returned for any query will be similar. Hence,
the presence or absence of the individual’s data are not easily noticed, which
means privacy for the individual.

Definition 1 is stated in terms of data sets D and D′ differing in at most one
row. Data sets differing in one row, called neighbor data sets, can be obtained
from one another in two ways: either by adding/removing one record (as as-
sumed in [5]) or by modifying a single record (as assumed in [6]). Depending on
the definition used, the magnitude of the required random noise may slightly
change, but the methods used for noise calibration remain the same. For the
sake of concreteness, in the sequel we will focus on addition and removal of
records.

The randomization κ in Definition 1 can be seen as the addition of a random
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noise, whose distribution may depend on the data set D, to the real value of
the query function f(D):

κ(D) = f(D) + (κ(D)− f(D)) = f(D) + Y (D)

If the distribution of the random noise depends on the actual data set D, we
say that noise is data-dependent. If the random noise distribution is constant
across data sets, we say that noise is data-independent. As mentioned above,
we focus on data-independent noise.

Data-independent noise for ε-differential privacy is usually implemented as
proposed by Dwork et al. in [6]. These authors proposed to generate noise
using a Laplace distribution whose scale parameter depends on the maximum
variation of the query function between neighbor data sets. This variation is
known as the L1-sensitivity of the function, and it is formally introduced next.

Definition 2 (L1-sensitivity) The L1-sensitivity of a function f : D → R
d

is defined as

Δf = sup
D,D′

‖f(D)− f(D′)‖1 = sup
D,D′

d∑
i=1

|fi(D)− fi(D
′)|

where fi is the i-th component of f , for all D, D′ such that one can be obtained
from the other by adding or removing one record.

In order to reach ε-differential privacy, Laplace-distributed random noise with
zero mean and Δf/ε scale parameter is added to each component of f .

1.1 Contribution and plan of this paper

The randomized function κ that provides ε-differential privacy can be viewed
as the addition of a random noise to the real value of the query function f .
Hence, the quality of the resulting differentially-private data critically depends
on the noise distribution. Taking this into account, the aim of this paper is to
build the optimal data-independent noise distribution for ε-differential privacy.

Section 2 states the criteria that will be used in later sections to determine
the optimal noise distribution. Section 3 elaborates further on the definition
of ε-differential privacy using absolutely continuous (a.c.) noise distributions
with the goal of characterizing the noise distribution in terms of its density
function. Section 4 shows that the Laplace distribution is not the optimal a.c.
noise distribution to achieve ε-differential privacy. Other distributions with the
probability mass more concentrated towards zero exist. Section 5 is devoted to
the construction of an optimal a.c. noise distribution to achieve ε-differential
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privacy for the case of a query whose function has fixed L1-sensitivity. To
construct this optimal distribution we need to characterize the properties of
the density functions that satisfy the ε-differential privacy definition. While
Section 5 shows that the Laplace distribution is actually near-optimal for a
single query, Section 6 illustrates that, for multiple queries or for a query with a
multivariate response, it can be substantially far from optimality. Conclusions
are summarized in Section 7.

2 Optimal random noise

To improve the utility of the outputs provided by an ε-differentially private
access mechanism, the random noise must be adjusted to minimize the distor-
tion to the real query result. When using Laplace noise, the scale parameter is
set to Δf/ε (see Section 1); this yields a noise distribution optimal within the
class of Laplacian noises, because a smaller scale parameter would no longer
satisfy ε-differential privacy. In Section 4 below, we will study whether the
Laplace distribution itself is optimal within all possible noise distributions,
an issue that has not been addressed in the literature. We devote the present
section to a previous and more fundamental topic: the concept of optimality
of a random noise distribution.

Deciding which among a pair of random noises, Y1 and Y2, leads to greater
utility is a question that may depend on the users’ preferences. The goal of
this section is to come up with an optimality notion that is independent from
the users’ preferences: if Y1 is better than Y2 according to our criterion, any
rational user must prefer Y1 to Y2. Later, in Section 5, we will determine the
form of all optimal random noises that provide ε-differential privacy to a given
query function.

Let Y1 and Y2 be two random noise distributions. If Y1 can be constructed
from Y2 by moving some of the probability mass towards zero (but without
going beyond zero), then Y1 must always be preferred to Y2. The reason is
that the probability mass of Y1 is more concentrated around zero, and thus
the distortion introduced by Y1 is smaller. A rational user always prefers less
distortion and, therefore, prefers Y1 to Y2.

We use the notation 〈0, α〉, where α ∈ R, to denote the interval [0, α] when
α ≥ 0, and the interval [α, 0] when α ≤ 0. If Y1 can be constructed from
Y2 by moving some of the probability mass towards zero, it must be P (Y1 ∈
〈0, α〉) ≥ P (Y2 ∈ 〈0, α〉) for any α ∈ R: otherwise, some of the probability
mass that Y2 had in 〈0, α〉 would have been moved outside 〈0, α〉, which is not
possible (by assumption mass is moved towards zero without crossing zero).
This leads to the following definition.
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Definition 3 Let Y1 and Y2 be two random noise distributions on R. We say
that Y1 is smaller (or better) than Y2, denoted by Y1 ≤ Y2, if P (Y1 ∈ 〈0, α〉) ≥
P (Y2 ∈ 〈0, α〉) for any α ∈ R. We say that Y1 is strictly smaller than Y2,
denoted by Y1 < Y2, if some of the previous inequalities are strict.

For α = (α1, . . . , αd) ∈ R
d, we use 〈0, α〉 to denote the set 〈0, α1〉×. . .×〈0, αd〉.

Consider a set S ⊂ R
d such that for every point x ∈ S we have 〈0, x〉 ⊂ S,

and a pair of random noises Y1 = (Y 1
1 , . . . , Y

1
d ) and Y2 = (Y 2

1 , . . . , Y
2
d ) such

that Y1 can be constructed from Y2 by moving some probability mass towards
zero. It is obvious that we must have P (Y1 ∈ S) ≥ P (Y2 ∈ S): if that was
not the case, it would mean that some of the probability mass that Y2 had in
S has been moved outside S, which is not possible because of the form of S.
This leads to the definition for the multivariate case.

Definition 4 Let Y1 and Y2 be two random noise distributions on R
d. We say

that Y1 is smaller (or better) than Y2, denoted by Y1 ≤ Y2, if P (Y1 ∈ S) ≥
P (Y2 ∈ S) for every set S ⊂ R

d such that for any x ∈ S we have 〈0, x〉 ⊂ S.
We say that Y1 is strictly smaller than Y2, denoted by Y1 < Y2, if some of the
previous inequalities are strict.

Definitions 3 and 4 induce an order relationship between random noises. We
use that order relationship to define the concept of optimal random noise.

Definition 5 A random noise distribution Y1 is optimal within a class C of
random noise distributions if Y1 is minimal within C; in other words, there is
no other random Y2 ∈ C such that Y2 < Y1.

As stated in the previous definition, the concept of optimality is relative to a
specific class C of random noise distributions. In Section 5 we will determine
the form of all optimal random noise distributions that provide ε-differential
privacy to a specific query function f ; to do so, we will take C to be the class
of all random noise distributions that provide ε-differential privacy for f .

3 Characterization of differential privacy in terms of the noise

To build the optimal data-independent random noise distribution satisfying
ε-differential privacy, we will have to analyze the properties that such a dis-
tribution must satisfy. The first step to perform this analysis is to express
the condition in the definition of ε-differential privacy in terms of the random
noise. Assuming a data-independent random noise Y , if we let κ = f +Y then
Inequality (1) becomes

P (Y ∈ S − f(D)) ≤ eεP (Y ∈ S − f(D′))
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As this inequality holds for all S, we can think of S as being of the form
S + f(D).

P (Y ∈ S) ≤ eεP (Y ∈ S + (f(D)− f(D′))) (2)

For the case of absolutely continuous random noise, the characterization in
Inequality (2) can be expressed in terms of the density function fY of Y . To
simplify the notation, we will assume that Y takes values in R. Consider that
fY is continuous except for a finite or countable set of removable discontinu-
ities and a finite or countable set of jump discontinuities. If the set of jump
discontinuities is countable, we will assume that it has no accumulation points;
that is, around any jump discontinuity point in R we assume we can find an
interval with no other jump discontinuity points. If fY has removable disconti-
nuities we will modify fY to remove them. As we are modifying fY in at most
a countable set, the modification will not affect the distribution of Y .

Let x be a continuity point of fY such that x + d is also a continuity point,
where d = f(D)− f(D′) for some data sets D and D′ that differ in one row.
Let I be an interval of size m centered at x such that fY is continuous in I and
I+d. We know that such I exists because there are no accumulation points in
the set of jump discontinuities. We can upper- and lower-bound the integrals
by multiplying the maximum and minimum by the size of the interval:

m× infI(fY ) ≤ ∫
I fY ≤ m× supI(fY )

m× infI+d(fY ) ≤ ∫
I+d fY ≤ m× supI+d(fY )

As fY is continuous in I, the limit of infI(fY ) and supI(fY ) as the size m of
I goes to zero is fY (x). In the same way, as fY is continuous in I + d, the
limit of infI+d(fY ) and supI+d(fY ) as m tends to 0 is fY (x+d). Dividing both
expressions by m and taking limits as m goes to zero, we have

fY (x) ≤ limm→0

∫
I
fY

m
≤ fY (x)

fY (x+ d) ≤ limm→0

∫
I+d

fY

m
≤ fY (x+ d)

Hence, combining the above limits and Expression (2) we have

∫
I
fY

m
≤ eε ×

∫
I+d

fY

m

↓ ↓
fY (x) eε × fY (x+ d)

Thus for all x ∈ R continuity point of fY , if x + d is a continuity point we
have

fY (x) ≤ eε × fY (x+ d), d = f(D)− f(D′) (3)

7



It is immediate to see that, if Inequality (3) holds, by integrating it over a
set we recover Inequality (2). Hence, Inequality (3) is in fact an equivalent
definition of ε-differential privacy for the case of a.c. random noise.

4 Non-optimality of the Laplace noise

Since the inception of differential privacy up to now [6,10], Laplace noise ad-
dition has been proposed as a method to achieve ε-differential privacy for
an arbitrary function f in terms of its L1-sensitivity. Also, as we said in the
introduction, this practice has raised some criticisms.

In this section we show, for a univariate function f with values in R, that
the Laplace distribution is not optimal in the sense of Definition 5. To that
end, we build another distribution, based on the Laplace distribution, that
still fulfills the conditions of differential privacy and has its probability mass
more concentrated towards zero, that is, it is strictly smaller than Laplace
according to Definition 3. Although the distribution we build is optimal, we
leave the formal proof of this assertion for Section 5.

The basic idea is to concentrate the probability mass around 0 as much as
possible. This can only be done to a certain extent, because Inequality (3)
limits our capability to do so. For example, increasing the value of the density
at a point x may increase the minimum value that fY may take in the interval
[x−Δf, x+Δf ].

In the construction of the distribution we will split the domain of fY into
intervals of the form [iΔf, (i + 1)Δf ] where i ∈ Z. For each interval we will
redistribute the probability mass that fX assigns to that interval. The new
density function f̃Y will take only two values (see Fig.1): max[iΔf, (i+1)Δf ] fX
at the portion of the interval closer to zero and min[iΔf, (i+1)Δf ] fX at the
portion of the interval farther from zero. The result is an absolutely continuous
distribution where the probability mass has clearly been moved towards zero.
We still have to check that it fulfills the conditions of ε-differential privacy.

To simplify, we will detail the argument only for intervals at the right of zero
(positive reals); the argument for intervals at the left of zero is symmetrical.
The probability mass at [iΔf, (i + 1)Δf ] is e−iε 1−e−ε

2
. The maximum value

of the density of the Laplace distribution, εe−iε

2Δf
, occurs at the beginning of

the interval and the minimum, εe−(i+1)ε

2Δf
, occurs at the end. Let us determine

the size mi of the interval portion where the new density will be set to the
maximum.
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Fig. 1. Construction of the new distribution based on the Laplace(0,1) distribution

Since the probability mass of the interval must be preserved, we have

εe−iε

2Δf
mi +

εe−(i+1)ε

2Δf
(Δf −mi) = e−iε1− e−ε

2

By solving for mi in the above equality, we obtain:

mi =
Δf

ε(1− e−ε)
(1− e−ε − εe−ε)

The important fact about mi is that it does not depend on i. Also, note that
the maximum density of the current interval is equal to the minimum density
of the previous interval. Hence, by joining the portion of the previous interval
which evaluates to the minimum with the portion of the current interval which
evaluates to the maximum, we obtain an interval of size (Δf −mi−1) +mi =
(Δf−mi)+mi = Δf which evaluates to a constant density value (such joined
intervals are depicted as horizontal segments in Fig. 1). This way, except for
the maximum of the first interval, we have split the domain of the density
function into intervals of size Δf such that the density function evaluates to
εe−iε

2Δf
. This clearly satisfies the density-based characterization of differential

privacy specified by Inequality (3).

5 Optimal data-independent absolutely continuous noise for uni-
variate queries

Section 4 has shown that the Laplace noise distribution is not optimal to
achieve differential privacy. A new distribution has been built that satisfies
differential privacy and has the probability mass more concentrated towards
zero. This section will determine the optimal data-independent absolutely con-
tinuous random noise distribution to achieve ε-differential privacy for any uni-
variate function with finite L1-sensitivity. Optimal noise distributions need not
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be symmetric; however, we focus on the symmetric case, because it is the most
usual one.

Showing that optimal absolutely continuous noise distributions are of a cer-
tain form requires using some properties that will be stated as lemmata. Some
of the proofs place additional regularity requirements on the noise distribu-
tion, beyond being absolutely continuous. These additional requirements are
hardly a limitation as they are satisfied by any practical distribution, and
can be overlooked if the reader is not interested in the proofs. In particular,
we restrict the discussion to absolutely continuous random noises, Y , whose
density function, fY , is continuous except for a finite or countable set of jump
or removable discontinuities, with the set of jump discontinuities having no
accumulation points. To avoid being unnecessarily cumbersome, we will not
mention this again in the sequel.

It was shown in Section 3 that for a.c. noise distributions the definition of
ε-differential privacy can be stated in terms of the density function. Now we
show that if the inequality in terms of the probability function is satisfied at
the extreme (i.e. it is satisfied as an equality), it also must be the case for the
inequality in terms of density functions.

Lemma 6 Let Y be an a.c. noise random variable that provides ε-differential
privacy to a function f with a given L1-sensitivity. Consider an interval I =
[i0, i1] ⊂ R. Then P (Y ∈ I +Δf) = e−εP (Y ∈ I) if and only if fY (x+Δf) =
e−εfY (x), ∀x ∈ I, except at those points x ∈ I such that fY is not continuous
at x or at x + Δf . Similarly, P (Y ∈ I − Δf) = e−εP (Y ∈ I) if and only if
fY (x−Δf) = e−εfY (x), ∀x ∈ I, except at those points x ∈ I such that fY is
not continuous at x or at x−Δf .

Proof. See Appendix. �

We are trying to find the optimal a.c. noise distribution that provides ε-
differential privacy. The goal is to concentrate as much probability mass around
the mean as possible; ε-differential privacy limits our capability to do so. We
will see how the probability mass must be distributed to achieve optimality.

Lemma 7 Let Y be a symmetric a.c. noise random variable with zero mean
that satisfies ε-differential privacy for a function f . If Y is optimal at providing
ε-differential privacy, then for all i ∈ Y

P (Y ∈ [(i+ 1)Δf, (i+ 2)Δf ]) = e−εP (Y ∈ [iΔf, (i+ 1)Δf ])

P (Y ∈ [−(i+ 2)Δf, −(i+ 1)Δf ]) = e−εP (Y ∈ [−(i+ 1)Δf, −iΔf ])

Proof. See Appendix. �

10



Corollary 8 Let Y be a symmetric a.c. noise random variable with zero mean
that provides ε-differential privacy to a function f . If Y is optimal at providing
ε-differential privacy then

fY (x+Δf) = e−εfY (x) ∀x ≥ 0

fY (x−Δf) = e−εfY (x) ∀x ≤ 0

when the points x and x+Δf in the first equality above and x and x−Δf in
the second equality are continuity points of fY .

Proof. The proof follows from Lemmata 6 and 7. �

Now we will show that for any symmetric a.c. noise distribution that provides
ε-differential privacy for a function f we can find another noise distribution,
similar to the one used in the proof that the Laplace distribution is not opti-
mal, that performs at least as well according to Definition 3.

Theorem 9 Let Y be an a.c. noise random variable with zero mean that
provides ε-differential privacy to a query function f . Then there exists a noise
random variable Ỹ with density function f

Ỹ
of the form

f
Ỹ
(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

M0e
−iε x ∈ [−d− (i+ 1)Δf,−d− iΔf ] , i ∈ N

M0 x ∈ [−d, 0]

M0 x ∈ [0, d]

M0e
−iε x ∈ [d+ iΔf, d+ (i+ 1)Δf ] , i ∈ N

that provides ε-differential privacy to f and satisfies Ỹ ≤ Y as per Defini-
tion 3.

Proof. We will assume that Y is optimal and that its density function is not
of the form of f

Ỹ
for any M0 and d. The goal is to build another distribution

Ỹ from Y such that the density f
Ỹ
(x) is as stated above and satisfies Ỹ ≤ Y .

Note that, from the definition of f
Ỹ
(x), the condition of ε-differential privacy

immediately holds for f .

Since Y fulfills the conditions of Corollary 8, we have

fY (x+Δf) = e−εfY (x) ∀x ≥ 0

fY (x−Δf) = e−εfY (x) ∀x ≤ 0

Now we apply the same procedure we used in Section 4 for the Laplace noise.
First we split the domain of fY into intervals of the form [iΔf, (i + 1)Δf ]
where i ∈ Z. At a given interval, we redistribute the probability mass that
fY assigns to that interval. The new density function f

Ỹ
(x) takes only two
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values: max[iΔf,(i+1)Δf ] fY at the portion of the interval closer to zero and
min[iΔf,(i+1)Δf ] fY at the portion of the interval farther from zero. The result

is an absolutely continuous distribution Ỹ with Ỹ ≤ Y .

To make sure that the distribution Ỹ has the specified form, and thus satisfies
ε-differential privacy, it remains to check that the length of the interval where
we assign maximum value is constant across intervals.

The probability mass at [iΔf, (i+ 1)Δf ] is e−iε 1−e−ε

2
. It is clear from fY (x+

Δf) = e−εfY (x), ∀x ≥ 0, that the maximum and the minimum of each inter-
val, Mi and mi respectively, satisfy Mi = e−iεM0 and mi = e−iεmo. Let di be
the size of the interval where the new density evaluates to the maximum. We
have

e−iεM0 × di + e−iεmo × (Δf − di) = e−iε1− e−ε

2

This formula leads to di =
1−e−ε−2m0Δf

2(M0−m0)
which does not depend on i, as we

wanted to see. �

Theorem 9 states that, for any random noise that provides ε-differential pri-
vacy to f , we can find another random noise distribution, of the specified
form, that is smaller. However, we still have to prove that such a distribution
is optimal.

Theorem 10 Let Y be a random noise distribution with a density function
fY of the form specified in Theorem 9. Then Y is optimal at providing ε-
differential privacy.

Proof. To prove that Y is optimal, we have to show that if we move some
probability mass of Y towards zero then ε-differential privacy no longer holds.
We only show it for the probability mass to the right of zero; a symmetric
argument can be used for the probability mass to the left of zero.

First of all, we must show that it is not possible to move any probability mass
from an interval Ii = [iΔf, (i+1)Δf ] to an interval Ij = [jΔf, (j+1)Δf ] with
0 ≤ j < i. This is straightforward: as the density fY specified in Theorem 9
has the maximum decrease rate between consecutive intervals compatible with
the constraints of ε-differential privacy, moving probability mass from Ii to Ij
would break ε-differential privacy.

To conclude the proof, we need to check that it is not possible to redistribute
the probability mass within an interval Ii so that it gets closer to zero. Within
the interval Ii, the density function fY takes values M0 exp(−iε) at I li (the
left portion of the interval) and M0 exp(−(i + 1)ε) at Iri (the right portion
of the interval). We cannot move any probability mass from Iri towards zero,
because the density would go below M0 exp(−(i+1)ε) and, thus, ε-differential
privacy would not hold. We cannot move any probability mass from I li towards
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Fig. 2. Variance for ε = 1 and Δf = 1

zero, because the density would go above M0 exp(−iε) and, thus, ε-differential
privacy would not hold. �

Although the theorems above are stated in terms of a fixed query function f ,
the optimal distribution depends only on Δf ; hence, all query functions with
the same L1-sensitivity share the same optimal noise distribution.

The values ofM0 and d can be freely chosen according to the user’s preferences.
In fact the two parameters M0 and d of the optimal family of distributions
can be reduced to one because, as shown in the proof of Theorem 9,

d =
1− e−ε − 2M0e

−εΔf

2(1− e−ε)M0

For instance, let us assume that the user prefers to minimize the noise variance.
We compute the variance of candidate optimal distributions in terms of the
parameters d and M0, and find the values that yield the minimum:

V (Z) = 2M0

∫ d

0
x2dx+ 2M0e

−ε
∑

i=0...∞
e−iε

∫ d+(i+1)Δf

d+iΔf
x2dx

The variance can be computed by performing the integrals and calculating
the sum of the power series. Fig. 2 shows the variance obtained in terms of
the parameter d for the case of ε = 1 and Δf = 1. In this case, the minimum
is reached at d = 0.416737 and the variance is 1.9181. This is below 2, the
variance of the Laplace noise with scale parameter 1.

Table 1 shows a comparison of the variance achieved by the Laplace distribu-
tion and the optimal a.c. random noise with minimum variance, for different
values of ε when Δf = 1. The table shows that the Laplace variance is only
slightly greater than the minimum variance; we can say that, for a single
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Table 1
Variance comparison between Laplace random noise and a.c. optimal random noise
with minimum variance, for Δf = 1

ε = 0.1 ε = 0, 5 ε = 1

Laplace distribution 200.00 8.00 2.00

Optimal a.c. noise with min. var. 199.92 7.92 1.92

0.96 0.97 0.98 0.99 1.00

5.990

5.992

5.994

Fig. 3. Size of the 95% symmetric confidence interval centered at zero

univariate query, although the Laplace distribution is not optimal, it is near-
optimal. Therefore, if the utility of the differentially private answer to a single
univariate query obtained using Laplace noise is poor, not much improvement
can be expected from using a data-independent variance-optimal random noise
distribution.

Assume now that the user wants the noise distribution that minimizes the size
of the symmetric confidence interval around the differentially private query
answer that contains the real query value at 95% confidence level. In this
case, we must solve a minimization problem, as before, but now the objective
function is the size of the confidence interval in terms of the parameters d
and M0. Fig. 3 shows the size of the confidence interval, when Δf = 1 and
ε = 1, in terms of parameter d. The minimal length for this case is achieved
for d = 0.993, approximately; in general, however, the actual value of d where
the minimum is reached depends on Δf and ε. Table 2 shows a comparison
between the optimal lengths of the confidence intervals at 95% confidence
level for several values of ε when Δf = 1. As expected, the results obtained
from the Laplace distribution are worse but close to those obtained using the
optimal distribution.
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Table 2
Comparison of the size of the symmetric 95% confidence interval between Laplace
random noise and a.c. optimal random noise with minimum confidence interval, for
Δf = 1

ε = 0.1 ε = 0, 5 ε = 1

Laplace distribution 59.91 11.98 5.99

Optimal a.c. noise with min. conf. int. 59.91 11.97 5.98

6 Optimal data-independent absolutely continuous noise for mul-
tivariate queries

In Section 5 we worked out the optimal a.c. random noise for a query with
values in R. We deal here with multiple queries or with a single query whose
response is a value in R

d: both cases are equivalent, because d queries with an-
swers in R can be viewed as a single query with answer in R

d. Determining the
form of all optimal multivariate a.c. random noises is out of scope; we restrict
to a class of noise distributions whose density consists of several steps (as was
the case for optimal univariate distributions) and show that they are optimal.
The optimal distributions constructed will be shown to be substantially better
than Laplace. Hence, while Laplace is near-optimal in the univariate case, in
general it is far from optimal for multivariate or multiple queries.

We will be less formal here and, to simplify even more, examples will be pre-
sented for the case of two queries/two dimensions, that is, d = 2; generalization
to arbitrary d is easy.

For the case of a.c. random noise for a single query, it was shown in Sec-
tion 3 that the ε-differential privacy condition can be expressed in terms of
the density function. The result is easily generalizable to greater dimensions,
and therefore here we can also express the condition in terms of the density
function.

Proposition 11 Let Y = (Y1, . . . , Yd) be an absolutely continuous random
noise that provides ε-differential privacy to a query f : D → R

d. Then ε-
differential privacy can be characterized in terms of the density function as:

fY (x) ≤ eε × fY (x+ d), d = f(D)− f(D′)

for all x and x+ d continuity points of fY , where D and D′ are data sets that
differ in one row.

Similarly to the case of a single univariate query, we will construct a noise
density with several steps, which reaches its maximum all over a set that
contains zero and decreases by a factor e−ε as we move away from it.
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The main difference with other, non-optimal distributions, such as multivariate
Laplace noise, is that the various components (dimensions) of the random noise
do not need to be independent. This allows more freedom in the definition of
the distribution, which we will employ to achieve a finer calibration to the
query function. This is illustrated below in an example, but prior to it we
define a set that will be repeatedly used in the remainder of this section.

Definition 12 Let f : D → R
d be a query function. The set of differences

between neighbor data sets is defined as

Sf = ∪D,D′〈0, f(D)− f(D′)〉

where D and D′ are data sets that differ in at most one row.

The set Sf contains all possible variations in f when one record changes. The
boundary of Sf can be seen as a generalization of the L1-sensitivity used in
the univariate case. Instead of summarizing the variability of f with a single
figure, as L1-sensitivity does, Sf keeps track of the maximum variability in
each direction.

Example 1 Consider a query function f = (f1, f2) such that Sf = [−1, 1] ×
[−1, 1]. From Definition 2, the L1-sensitivity of f is

Δf = sup
D,D′

‖f(D)−f(D′)‖1 = sup
D,D′

(|f1(D)−f1(D
′)|+|f2(D)−f2(D

′)|) = 1+1 = 2

As stated in Proposition 11, the density of the random noise, fY , in each of
the points of the set [−1, 1]× [−1, 1] must be in the range [e−εfY (0), e

εfY (0)].
When using independent Laplace-distributed components with zero mean and
Δf/ε scale parameter, the top value for the density is reached at zero, and it
decreases exponentially as we move away from it. Points with density e−εfY (0)
are those that have L1-norm equal to Δf . Fig. 4 depicts Sf as a gray shaded
box. If all points in Sf are protected with independent Laplace-distributed ran-
dom noise components, all points within [−1, 1] × [−1, 1] must have density
within the range [e−εfY (0), fY (0)].

As it can be appreciated in Fig. 4, to satisfy ε-differential privacy at points
(1, 1), (1,−1), (−1,−1) and (−1, 1) with independent Laplace noise addition
for each dimension, we are overprotecting those points with L1-norm less than
or equal to Δf = 2 that do not belong to [−1, 1]× [−1, 1]; the density at these
points is greater or equal to e−εfY (0), while this is not a requirement of ε-
differential privacy (which only requires a density greater or equal to e−εfY (0)
for the points in Sf).

The ratio between the size of the overprotected region and the size of Sf may
become still larger if the variability of one of the components is greater than the
variability of the other. Fig. 5 illustrates the case of Sf being the set [−1, 1]×
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Fig. 4. Achieving ε-differential privacy by Laplace noise addition for
Sf = [−1, 1] × [−1, 1]. The shaded box represents the possible differences in the
query result between data sets that differ in one record. Differential privacy requires
the density of the noise in the shaded box to be within a factor in [exp(−ε), exp(ε)]
of the density at zero. The square that encloses the shaded box represents the points
that satisfy the previous condition when using Laplace noise.
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Fig. 5. Achieving ε-differential privacy by Laplace noise addition for
Sf = [−1, 1] × [−10, 10] The shaded box represents the possible differences in the
query result between data sets that differ in one record. Differential privacy requires
the density of the noise in the shaded box to be within a factor in [exp(−ε), exp(ε)]
of the density at zero. The square that encloses the shaded box represents the points
that satisfy the previous condition when using Laplace noise.

[−10, 10].

In the construction of the piecewise constant noise density, we will fix a set
S0 ⊂ Sf with 〈0, x〉 ⊂ S0 for all x ∈ S0, where the maximum density will be
reached. From this S0, we will define Si as the set that contains the points
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that are reachable from Si−1 in one step, that is, by adding a value from Sf :

Si = {x ∈ R
d|x = z + δ, z ∈ Si−1, δ ∈ Sf} \ ∪i−1

j=0Sj

The density value over the points in Si will be e
−ε times the density value over

the points in Si−1. Therefore, for x in Si it will be

fY (x) = Me−iε

The value M must be calibrated so that the total probability equals 1. Such
calibration is possible because the density function decreases exponentially as
i grows.

The following theorem shows that the constructed distribution is optimal at
providing ε-differential privacy to the function f .

Theorem 13 Let f = (f1, . . . , fd) be a query function with values in R
d. Let

Y = (Y1, . . . , Yd) be an a.c. random noise with density

fY (x) =
∑
i≥0

M exp(−iε)ISi
(x)

where ISi
(x) is the indicator function for set Si and M has been calibrated to

adjust the total probability mass to one. If the following conditions hold, then
Y is optimal at providing ε-differential privacy to f:

• S0 ⊂ Sf

• 〈0, x〉 ⊂ S0 for all x ∈ S0

• Si+1 = (Si + Sf ) \ ∪i−1
j=0Sj for all i ≥ 0

Proof. See Appendix. �

Example 2 Let f be a function with Sf = [−1, 1]× [−10, 10], and take ε = 1.
Hence, the sensitivity of f is Δf = 1+10 = 11 and ε-differential privacy with
two independent Laplace-distributed random noise components requires these
components to have zero mean and 11

ε
scale parameter. Our proposal to achieve

ε-differential privacy is to use the piecewise constant density construction by
setting S0 = [−0.1, 0.1] × [−1, 1]. Fig. 6 shows the density function of both
distributions. Note that with the Laplace distribution the noise densities for
both components of f decrease at the same rate, even if the second component
of f has ten times the sensitivity of the first one.

It is easily appreciated in the figure that the piecewise constant distribution
has much more probability concentrated around zero, which agrees with our
optimality definition in Section 2. To compare both distributions, we compute
the variance of the components, and the minimal size of a confidence region
at some confidence levels.
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Fig. 6. Density functions of the Laplace and piecewise constant noise distributions
required to achieve 1-differential privacy for a bivariate function f = (f1, f2) with
Δf1 = 1 and Δf2 = 10

Table 3
Minimal size of the confidence region for two-dimensional Laplace-distributed ran-
dom noise with scale parameter 11

Confidence level α Size

0.99 73.02 10663

0.95 52.18 5445

0.90 42.79 3662

For Laplace-distributed random noise (Y1, Y2), the computations are easy. Since
we know that Y1 and Y2 follow a Laplace distribution, their variance is twice
the square of the scale factor

V ar(Y1)= 242

V ar(Y2)= 242

With the Laplace-distributed random noise (Y1, Y2), points with equal L1-norm
are assigned the same noise density. Therefore the confidence region of min-
imal size, for a given confidence level, is of the form {x| ‖x‖ ≤ α}. Table 3
shows the size of the confidence region for several confidence levels.

Computing the variance of the components of the piecewise constant distribu-
tion will be done in terms of the sets Sf and S0. If we let Sf = [−s1, s1] ×
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Fig. 7. Comparison of the components of the Laplace and the piecewise constant
random noise distributions required to achieve 1-differential privacy for a bivariate
function f = (f1, f2) with Δf1 = 1 and Δf2 = 10. Top, comparison of the first
component; bottom, comparison of the second component.

[−s2, s2] and S0 = [−z1, z1] × [−z2, z2] then the density of the components Y1

and Y2 is

fY1(x)= 2Me−i1ε × (z2 + s2i1 + s2/(e
ε − 1))

fY2(x)= 2Me−i2ε × (z1 + s1i2 + s1/(e
ε − 1))

where i1 = (|x| − z1)/s1 + 1� is the index of the first set Si such that (x, 0)
belongs to it, i2 = (|x| − z2)/s2 + 1� is the index of the first set Si such
that (0, x) belongs to it, and M is a constant adjusted so that the random
distribution (Y1, Y2) has probability mass one. Fig. 7 compares the first and
second components of the Laplace and the piecewise constant random noise.
Note that the piecewise constant distribution seems to slightly underperform
Laplace for the second component, but it clearly outperforms Laplace for the
first component.

Since the mean of the components is zero, their variance can be computed by
integrating

∫
R
x2fYi

(x)dx, which results in:

V ar(Y1)= 4.0338

V ar(Y2)= 403.38
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Table 4
Minimal size of the confidence region for the piecewise constant noise distribution
needed for a bivariate function f = (f1, f2) with Δf1 = 1 and Δf2 = 10

Confidence level β Size

0.99 6.99 1790.2

0.95 4.79 916.6

0.90 3.90 611.2

Compared to the variances obtained for the Laplace-distributed random noise,
we observe that the variance for Y2 when using the piecewise constant distri-
bution is about twice as big as when using Laplace distribution. On the other
side, the variance of Y1 is much smaller when using the piecewise constant
distribution. These results are consistent with the previous observation about
Fig. 7.

We compute now confidence regions for the piecewise constant distribution. To
obtain a confidence region with minimal size, we make sure to include all the
points in Si before including any point in Si+1. We will consider confidence
regions of the form [−z1−βs1, z1+βs1]× [−z2−βs2, z2+βs2]. Table 4 shows
the confidence regions obtained. By comparing with Table 3, it can be observed
in the table that the minimal size for a confidence level is much smaller when
using the piecewise constant distribution.

Note that in Example 1 we considered Sf to be the product of two intervals.
This case models the situation where the query function components are in-
dependent, in the sense that any combination of values for the difference of
the query function is possible. That is, Sf = [−1, 1]× [−1, 1] means that, for
any [δ1, δ2] ∈ [−1, 1] × [−1, 1], we can find two data sets D and D′ differing
in one row such that f1(D) − f1(D

′) = δ1 and f2(D) − f1(D
′) = δ2. Taking

Sf to be the product of intervals is the natural option in the case of an in-
teractive mechanism [6], where we get to know each of the components of the
query function (i.e. each successive query if we view the multivariate query
as a group of queries) at different times. In an interactive mechanism it is
not possible to construct the distribution that best matches the multiquery
function f , because at the time of the first query we only know f1. Clearly,
it is possible to achieve a better noise calibration for a non-interactive query
than for an interactive one, but using independent Laplace noise addition for
each component fails to exploit non-interactivity.
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7 Conclusions

The goal of this paper was to analyze the optimality of data-independent ran-
dom noise distributions to achieve ε-differential privacy. The first step was to
define the concept of optimal distribution as a distribution that concentrates
the probability around zero as much as possible while ensuring differential
privacy. This criterion led to a family of optimal distributions, which can be
refined by using additional criteria. In the examples, we have computed opti-
mal distributions using as additional criteria the minimization of the response
variance or the minimization of the size of the confidence interval around the
response.

For a single univariate query, the optimal absolutely continuous noise distri-
butions to achieve ε-differential privacy were built; as a result, we obtained
a family of piecewise constant density functions. The comparison with the
Laplace noise distribution showed that Laplace performs only slightly worse
than the optimal absolutely continuous distributions. Comparison figures were
provided for the variance and the size of the confidence interval.

For a multivariate query or multiple queries, a piecewise constant construc-
tion similar to that of a single query was presented. Comparisons in terms of
variance and of size of the minimal confidence interval showed that, for mul-
tivariate and/or multiple queries, the Laplace distribution is far from being
optimal. Given the popularity of the Laplace distribution, this is a very rel-
evant result. We also observed that the proposed mechanism provides better
responses for non-interactive queries, as it is able to exploit the global knowl-
edge on the query function. This is not possible for mechanisms that assume
the components of the query function to be independent, as it is the case for
Laplace noise addition.

Appendix: Proofs

Proof (Lemma 6). We will prove the first claim; the second one is completely
symmetric. The proof of (⇐=) is straightforward by computing the probability
as the integral of the density function. We will focus on the (=⇒) implication.
By the ε-differential privacy condition we know that fY (x+Δf) ≥ e−εfY (x).
Assuming that the implication does not hold, a continuity point a ∈ I exists
such that fY (a + Δf) > e−εfY (a). Because of the constraints on the set of
discontinuity points, an interval [a0, a1] ⊆ I exists such that fY (x + Δf) >
e−εfY (x), ∀x ∈ [a0, a1]. Now we can decompose the probabilities in the state-
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ment of the Lemma as follows:

P (Y ∈ I) =
∫ a0

i0
fY (x)dx+

∫ a1

a0
fY (x)dx+

∫ i1

a1
fY (x)dx

P (Y ∈ I +Δf) =
∫ a0

i0
fY (x+Δf)dx+

∫ a1

a0
fY (x+Δf)dx+

∫ i1

a1
fY (x+Δf)dx

Since fY (a + Δf) ≥ e−εfY (a) and, for x ∈ [a0, a1], fY (a + Δf) > e−εfY (a),
we have P (Y ∈ I + Δf) > e−εP (Y ∈ I) , which is a contradiction that
comes from the assumption that a continuity point a ∈ I exists such that
fY (a+Δf) > e−εfY (a). �

Proof (Lemma 7). The second claim is completely symmetric to the first one; a
symmetric distribution that satisfies the first claim will also satisfy the second
one. We will show that, if the claims do not hold, we can build another dis-
tribution that fulfills ε-differential privacy and has the probability mass more
concentrated towards zero.

We will assume that the claim for Y does not hold and we will build another
distribution Ỹ that provides ε-differential privacy and has Ỹ ≤ Y . If the claim
held, by Lemma 6, it would be fY (x + Δf) = e−εfY (x) ∀x ∈ R where x and
x + Δf are continuity points. Let i0 ≥ 0 be the index of the first interval
[iΔf, (i+ 1)Δf ] such that fY (x +Δf) = e−εfY (x) does not hold for all x in
the interval. Let f̃i0 be the function defined as follows

f̃i0 (x) =

⎧⎪⎪⎨
⎪⎪⎩
e−εfY (x+Δf) x ∈ [− (i0 + 1)Δf,−Δf ]

fY (x) x ∈ [−Δf, +Δf ]

e−εfY (x−Δf) x ∈ [Δf, (i0 + 1)Δf ]

Since f̃i0 has been defined in such a way that the decrease of the density
between points at distance Δf is maximum as we move away from zero, it is
clear that we will have fY > f̃i0 . As both fY and f̃i0 are symmetric, we will
only consider the points on the right of zero; the same transformations must be
applied to the points on the left. For each x ∈ [Δf, (i0 + 1)Δf ] we will consider
ex = fY (x)− f̃i0 (x), the excess density of fY over f̃i0 . We will build another
function fi0 by distributing ex among the points {x+iΔf : 0 ≤ i ≤ i0} in such
a way that the new function concentrates as much as possible around the mean,
and ε-differential privacy is satisfied. The density added to f̃i0 at x+ iΔf will
be αxe

−iε where αx is determined by imposing
∑

i=0,...,i0 αxe
−iε = ex. Note that

fi0 still satisfies that images of points at distance Δf exponentially decrease
as we move away from zero, that is fi0(x+Δf) = e−εfi0(x).

It is important to note that the new function fi0 satisfies ε-differential privacy
in the range [−i0Δf, i0Δf ]. We will show that ε-differential privacy is satisfied
in the interval [−Δf,Δf ]; then by using that the images by fi0 of points at
distance Δf exponentially decrease as we move away from zero, ε-differential
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privacy will be satisfied in [−i0Δf, i0Δf ]. In fact we will only check that ε-
differential privacy is satisfied in [0,Δf ]; if it is so, by the symmetry of fi0 ,
differential privacy will be satisfied in the whole interval [−Δf,Δf ].

We must check that fi0(x + δ) ≤ eε × fi0(x) for all x ∈ [0,Δf ] and all δ ∈
[−Δf,Δf ]. Let us assume that there exist x ∈ [0,Δf ] and δ ∈ [−Δf,Δf ]
such that the condition is not satisfied, that is, fi0 (x+ δ) > eεfi0 (x). If x +
δ ∈ [Δf, 2Δf ], by multiplying by e−(i0−1)ε we have that x + (i0 − 1)Δf , the
corresponding point in the interval [(i0 − 1)Δf, i0Δf ], does not fulfill the ε-
differential privacy condition, but this is not possible as we had fY (x+i0Δf) ≤
eεfY (x + (i0 − 1)Δf) and when building f0 we have increased the value at
x + (i0 − 1)Δf and decreased the value at x + i0Δf . If x + δ ∈ [0,Δf ],
by multiplying by e−i0ε we have that the corresponding point in the interval
[i0Δf, (i0 + 1)Δf ] does not satisfy the differential privacy condition. This is
impossible as we know that f̃i0 and fY do satisfy it and that fi0 lies between
them; therefore fi0 must also satisfy the differential privacy condition. In the
case x+ δ ∈ [−Δf, 0], the justification is different. The point −x− δ belongs
to the interval [0,Δf ] and, by the symmetry of fi0 , we have fi0(−x − δ) =
fi0(x+ δ); therefore, as we have already checked that the condition is satisfied
when x+ d ∈ [0, Δf ], it must also be satisfied when x+ d ∈ [−Δf, 0].

Now we iterate this process and define functions fi, i ∈ N. To be able to
do this, it is important to note that, when defining fi, we are reducing the
density amount in the interval [iΔf, (i+ 1)Δf ] and that f̃i+1 is defined in
[(i+ 1)Δf, (i+ 2)Δf ] by reducing the value in the previous interval as much
as possible while still satisfying ε-differential privacy. This means that fY >
f̃i+1 at [(i+ 1)Δf, (i+ 2)Δf ] and thus we can compute the excess and dis-
tribute it among the corresponding points in the previous intervals.

The resulting f̃∞ satisfies the ε-differential privacy condition. By construction
it also satisfies fY (x + Δf) = e−εfY (x) ∀x ∈ R which by integration over
the desired intervals leads to the claim of the lemma. Moreover, as all the
probability mass translation has been done towards zero, we have Ỹ ≤ Y . �

Proof (Theorem 13). First of all we check that Y satisfies the ε-differential
privacy condition as stated in Proposition 11. Consider x ∈ R

d and δ ∈ Sf .
The sets Si form a cover of Rd; therefore we have x ∈ Si for some i ∈ N. For
x + δ we have one of the following possibilities: x + δ ∈ Si−1, x + δ ∈ Si, or
x+δ ∈ Si+1. The value of the density function will, respectively, be Me−(i−1)ε,
Me−iε, or Me−(i+1)ε; in all three cases, the ε-differential privacy condition is
satisfied.

To show that Y is optimal at providing ε-differential privacy to f we have to
check that if we move some probability mass towards zero, the resulting ran-
dom noise does not provide ε-differential privacy to f . We partition R

d, and
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check, for each set in the partition, that it is not possible to move any prob-
ability mass towards zero and still satisfy ε-differential privacy. The partition
is {Si

f , i ≥ 1} where S1
f = Sf and Si+1

f = (Si
f + Sf ) \ ∪i

j=1S
j
f .

We start by checking that it is not possible to move any probability mass
contained in S1

f towards zero and still satisfy ε-differential privacy. The density
fY in S1

f can be expressed as

fY (x) = M × IS0(x) +M exp(−ε)× IS1
f
\S0

(x)

Note that fY already has the maximum change in the density that ε-differential
privacy allows: exp(ε). In other words, if we increase the density above M or
decrease it below M×exp(−ε), ε-differential privacy will not hold. Let U ⊂ S1

f

be the set that will have its probability mass reduced. It must be U ⊂ S0;
otherwise some points would have its density reduced below M × exp(−ε),
which is not possible. Now, as we have 〈0, x〉 ⊂ S0 for all x ∈ S0 (i.e for any
point in S0 the points closer to zero are already in S0), if we move probability
mass from U towards zero, this probability mass must go to a set of points U ′

contained in S0. This way the density of points in U ′ would be greater than
M , which would also break ε-differential privacy.

To conclude the proof we have to check that it is not possible to move any
probability mass belonging to a set Si+1

f with i ≥ 1 towards zero and still
satisfy ε-differential privacy. Note that the density function fY decreases as
fast as possible as we move away from S0: according to Proposition 11 the
density at a point y reachable from a point x by adding a value from Sf

must satisfy fY (y) ≥ exp(−ε)fY (x). We have set the density fY at Si+1 to
be exp(−ε) times the density at Si; that is, the minimum value that satisfies
ε-differential privacy.

To move some probability mass belonging to Si+1
f towards zero we must select

a set U ⊂ Si+1
f and reduce its probability mass. In other words, the density

function at the points in U is to be reduced. But this is not possible, if we want
to preserve ε-differential privacy (as pointed out in the previous paragraph,
when we move away from S0, the density fY already decreases as fast as
differential privacy permits). �
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