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Let G be a (molecular) graph with vertex set V = {vy, v5,..
v; € V. If the vertices v;,, v;,, ..

Randic index R, of G is defined as the sum of the terms 1/\/‘3(7/1'1 )0(vy,), .., d(v;,,,) over all paths of length

., Un}. Let 8(v;) be the degree of the vertex
., v;,,, form a path of length h,h > 1, in the graph G, then the hth order

h contained (as subgraphs) in G. Lower and upper bounds for R, are obtained, in terms of the vertex
degree sequence of G. Closed formulas for R, are obtained for the case when G is regular or semiregular

bipartite.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this Letter we consider simple graphs G = (V,E) with n verti-
ces and m edges. Let V = {vy, v,, ..., v, } be the vertex set of G, and
let §; = 6(v;) denote the degree of the vertex »;. Without loss of
generality we may assume that §; > 6, > --- > 6,. The maximum
and minimum vertex degree will be denoted by 4 and J, respec-
tively. In other words, §; = 4 and 6, = §. In chemical applications
it is usually 6 =1 (e.g., in the molecular graphs of alkanes) or
6 =2 (e.g., in the molecular graphs of benzenoid hydrocarbons);
in molecular graphs it is always 4 < 4 [1].

The Randic index R;(G) of a graph G was introduced in 1975 [2]
and defined as

1

Ry =R(G) = — 1

RO =3 T =
This graph invariant, sometimes referred to as connectivity index,
has been successfully related to a variety of physical, chemical,
and pharmacological properties of organic molecules and became
one of the most popular molecular-structure descriptors [2-6].
After the publication of the seminal paper [7], mathematical prop-
erties of R; were extensively studied, see [7-10] and the references
cited therein.

The higher-order Randic indices are also of interest in chemical
graph theory [3,4,11,12]. For h > 1, the hth order Randi¢ index
Rn(G) of a graph G is defined as

1
Uiy Uiy Uiy, | EPh \/(S(Vi] )5(1/,'2) s (S(U,',M )

Ry = Rn(G) = (2)
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where 2, denotes the set of paths of length h contained (as sub-
graphs) in G.

Of the higher-order Randic¢ indices the most frequently applied
is Ry; for more details see [3,5,13,14].

So far only a few mathematical results have been published on
this class of graph invariants [13-19]. We point out two results as
examples. The following upper bound was obtained in [15] by Ara-
ujo and de la Pefia,

ny4cyp (4 —1\"1
Ry <™ h(ﬁ) 3)

where n;, is the number of vertices v in G, such that there is at least
one path of length h starting at v, and c;, is the number of vertices v
which accept a path of length h from v to ».

The weighted adjacency matrix of a graph G of order n, was intro-
duced by the second author of this Letter [13,20] as the n x n ma-
trix .«# whose (i,j)-entry is

%7 Vi ~ U
aij _ A /r)(i/,-)r)(vj) (4)

0 otherwise

where by »; ~ v is indicated that the vertices »; and v; are adjacent.
This matrix was used in the study of the Randi¢ index and condi-
tional parameters in graphs [20] and elsewhere [21]. Moreover, if
A1, %2, .., are the eigenvalues of .«Z, then there is a following rela-
tion between R, and R [13]:

2
Rz?(%Jrqu)? (5)
where
n 2
=Y/ and d’:2]rn<z*/5(”)> (6)
i=1 veV
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The purpose of this note is to find bounds for R, in terms of the de-
gree sequence of G. As a consequence, we obtain closed formulas for
the case of regular graphs and semiregular bipartite graphs.

Recall that a graph is said to be regular (of degree r) if all its ver-
tices have equal degrees (equal to r); for instance, the molecular
graphs of fullerenes are regular of degree 3. A bipartite graph is
said to be semiregular (of degrees ', ") if for any two adjacent ver-
tices u, v it holds é(u) =1’ and é(v) =rq".

2. Results

The girth of a graph is the size of its smallest cycle. For instance,
the molecular graphs of benzenoid hydrocarbons have girth 6. The
molecular graphs of biphenylene and azulene have girth 4 and 5,
respectively [1].

Theorem 1. Let G = (V,E) be a graph with girth g(G) and degree
sequence 61 = 9y = -+ =0, 01 =4, 0, =9.If 6 = 2 and g(G) > h,
then

(71)’12 n

25—1

(A o 1)}1—2
Ru(G) gﬁ

SGi-1VE (7)
i=1

Proof. Since 6 > 2, for every v € V, the number of paths of length
2 in G of the form v;vv; is é(v)(6(v) — 1)/2. So, we have

" 5(v) -1) 1
R, = !
vlv%:ex’z \/ Ul yk Z Aé(Uj)A
(8)
and
1 " 5(vp) (6(vy) — 1 1
L RSy TR
ViV UEPy 5(1);)()(7/j)()(7/k) j=1 Ob(vj)()

Therefore, the result follows for h = 2.

Suppose now that h > 3. Given a vertex u € V, let 2;,(u) be the
set of paths of length h whose second vertex is u, that is, paths of
the form ujuuy,. .., u,. We denote by N(v) the set of neighbors of
an arbitrary vertex » € V. Note that the degree of vis 6(v) = [N(v)|.
If 5 > 2, then for every v € V and w € N(v) we have N(w)\{v} # 0.
So, for every u €V, there exists a vertex sequence ujuuy,...,U,
such that wuy,u; € N(u), uszeN(uz)\{u}, useN@usz)\{u}, ..
up € N(up_1)\{up_2}. If g(G) > h, then the sequence uquuy,...,u;
is a path. Conversely, every path of length h whose second vertex is
u can be constructed as above. Hence, the number of paths of
length h whose second vertex is u is bounded by

h-1
Zaw) > min {«5(u><é(u> - D Jow) - 1)}

j=2
> o(u)(s(u) - 1)(6 - 1)"? (10)
and
h-1
124l < m(){ - hJew) 1}

<o) (s(u) — 1)(4 - 12 (11)

On the other hand, the higher-order Randi¢ index of G is
bounded by

1 1
Py 2i(
2%‘ Mé(u)ﬁ 2%‘ i Nz

Thus, by (10)-(12) we deduce the bounds stated in Theorem 1. O

(12)

Corollary 2. Let G =
minimum degree 6 and maximum degree A. If 6 >
then

Cm-n)E-1"2% |s 2m-n)(4-1)"% |4
g SRO < —— 5 (13)

Proof. The result is obtained directly from Theorem 1 by noticing
that

> - (Z - )

i=1

(V,E) be a graph of girth g(G), order n, size m,
2 and g(G) > h,

=(2m-n)s (14)
and

Zn:(ai—l)ﬁg <i5,——n>\/2(2m—n)\/2 O (15)

i=1 i=1

It is well known that for regular graphs of order n, the ordinary
Randi¢ index R; is equal to n/2. From Theorem 1 we immediately
arrive at a generalization of this result to the case of the higher-or-
der Randic indices:

Corollary 3. Let G = (V,E) be a é-regular graph of girth g(G) and
order n. If 6 > 2 and g(G) > h, then

Ri(G) =1 (%)'H (16)

Theorem 4. Let G = (V,E) be a bipartite graph of girth g(G) and let
{V1,V,} be the bipartition of V, so that |V,|=r and |V,|=s. Let
A" =maXyey, {6(v)}, ¢ =minyey, {6(v)}, 4" = max,ev,{5(v)} and
8" = min,ey, {6(2)}. If min{d',6"} > 2 and g(G) > h, then

<r(A/_1)h/2 (A//_l){h/Zj S(A/—

l)Lh/ZJ(A// _ 1)%/214

Ru(G) < /2]—1 wn (/2] [h/2] gnlh/2]-1
21/§ T 72T 2V
(17)
and
1 qzTh/21=1 s 1y (h/2] s qy\[h/2) s qy[h/21-1
Ri(G) > i 1/7) h/2 Eb h12) +S(0 ) B 2(0 hlz) 1 (18)
2 A/L /2] A”( /2] 2 A'{ / WA"L /2] -

Proof. If min{¢’,5"} > 2, then for every u €V and w € N(u) we
have N(w)\{u} # 0. So, for every vertex u €V, there exists a
sequence uujus,...,u, such that u; € N(u), uy € N(up)\{u},
us € N(uz)\{u1},..., un € N@up_1)\{up2}. If g(G) >h, then the
sequence uu Uy, ..., U, is a path. Conversely, every path of length
h starting at u can be constructed as above.

Suppose that h is even. Then the number of paths of length h
starting at a vertex u is bounded by

Th(u) < A'(4 = D) A" =12 vuev, (19)
and
Ta(u) < A" (A4 = D2 (4" = 1)1 vuev, (20)

Thus, the number of paths of length h in G starting at a vertex
belonging to V; is bounded by

ZTh [ (4

ueV1

1)h/2—1(Au _ 1)h/2] (21)

Analogously, the number of paths of length h in G starting at a ver-
tex belonging to V, is bounded by

-y na)

ueVz

[SA”( 1)’1/2(41" _ 1)h/271] (22)
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Therefore, we have

1
iy Uiy s Wiy Py \/5(2),'1 )(3(1112) cee (3(1),',]“)
1 1
g I)I /!
h N h N

_ TA/(A/ _ -l)h/Z—l (A// _ -l)h/Z SA//(A/ _ 1)h/2(A// _ -l)h/Z—l
= o/ g2 g2 ZW

4 -1 h/2-1 A"~ 1 h/2 s(A —1 h/2 A"~ 1 h/2-1
=D ) s = 1) - ) 23

2 /5/h/2—] 6//h/2 2 /5/h/25//h/2—1

On the other hand, if h is odd we obtain that the number of
paths of length h starting at a vertex u is bounded by

Ta(u) < A'(A = 1)BV2 4 - 1)BD2 0y ey, (24)
and
Tp(u) < A4"(4' = 1)"V2 (47 —1)B-D2 e, (25)

Now, by proceeding as above we obtain
1
Uiy Uiy s Viy 4 €% \/5(7/,‘1 )5(7/1’2) s (3(1},‘}14rl )

- rA/(A/ _ 1)(/’1—1)/2(AN _ 1)(1’1—1)/2 SA//(A/ _ 1)(/’1—1)/2(AN _ 1)(1’1—1)/2
= 5/(h+1)/25//(h+])/2 2 5/(h+])/2577(h+1)/2

r(A — 1)(h71)/2(A// B 1)(h71)/2 s(4 — 1)(1171)/2(41” _ 1)(h71)/2
- 5 B=3072 uhiT)/2 9\/5 T2 51 (A3)2

(26)

By joining (23) and (26) into a single formula we obtain the upper
bound stated in Theorem 4. The lower bound is deduced
analogously. O

Corollary 5. Let G be a (&', §")-semiregular bipartite graph with r +s
vertices, of girth g(G). If min{¢', 6"} > 2 and g(G) > h, then

r 5/ -1 [h/2]-1 5// -1 [h/2] s 5/ -1 |h/2] 6// -1 [h/2]-1
A VG Gl VLGRS e VG Gl )

517211 grTh/2] 2/ 5721 grh/2i-1

Ru(G)

(27)

3. Concluding remarks

Both the ordinary Randi¢ index Ry, Eq. (1), and its higher-order
congeners Ry, h > 1, Eq. (2), are important in chemical applications,
when these are computed for molecular graphs. In such applica-
tions the vertex degree sequence of the graph is always known,
as well as its girth. In this work we obtained lower and upper
bounds for R, in terms of the vertex degree sequence, valid when-
ever the girth is greater than h. Thus our results make it possible to
find a narrow interval for Ry, Ry, Rs, . . ., applicable to any chemically
relevant type of cyclic or polycyclic molecular graphs.
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